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to explain the canonical supernova kinetic energy (∼1051 erg).
Moreover, the softer nuclear equation of state (EOS), such as the
Lattimer & Swesty (1991) (LS) EOS with an incompressibility
at nuclear densities, K, of 180 MeV, is employed in those
simulations. In addition to striking evidence that favors a
stiffer EOS based on the nuclear experimental data (K =
240 ± 20 MeV; Shlomo et al. 2006), the soft EOS may not
account for the recently observed massive neutron star of ∼2 M⊙
(Demorest et al. 2010).4 Using a stiffer EOS, the explosion
energy may be even lower as inferred by Marek & Janka
(2009) who did not obtain the neutrino-driven explosion for
their model with K = 263 MeV.5 What is then missing?
The neutrino-driven mechanism would be assisted by other
candidate mechanisms such as the acoustic mechanism (e.g.,
Burrows et al. 2006) or the magnetohydrodynamic mechanism
(e.g., Kotake et al. 2004; Takiwaki et al. 2004, 2009; Burrows
et al. 2007a; Guilet et al. 2011; Obergaulinger & Janka 2011;
Takiwaki & Kotake 2011; see also Kotake et al. 2006 for
collective references therein). We may find the answer by taking
into account new ingredients, such as exotic physics in the core
of the protoneutron star (PNS; e.g., Takahara & Sato 1988;
Sagert et al. 2009), viscous heating by the magnetorotational
instability (Thompson et al. 2005; Masada et al. 2012), or energy
dissipation via Alfvén waves (Suzuki et al. 2008).

But before seeking alternative scenarios, it may be of primary
importance to investigate how the explosion criteria extensively
studied so far in 2D simulations could or could not be changed
in three-dimensional (3D) simulations. Nordhaus et al. (2010)
are the first to argue that the critical neutrino luminosity
for producing neutrino-driven explosions becomes smaller in
3D than in 2D. They employed the CASTRO code with an
adaptive mesh refinement technique, by which unprecedentedly
high-resolution 3D calculations were made possible. Since it
is generally computationally expensive to solve the neutrino
transport in 3D, they employed a light-bulb scheme (e.g., Janka
& Müller 1996) to trigger explosions, in which the heating and
cooling by neutrinos are treated by a parametric manner. Since
the light-bulb scheme can capture fundamental properties of
neutrino-driven explosions (albeit on the qualitative grounds), it
is one of the most prevailing approximations adopted in recent
3D models (e.g., Iwakami et al. 2008, 2009; Wongwathanarat
et al. 2010). A number of important findings have been reported
recently in these simulations, including a potential role of non-
axisymmetric SASI flows in generating spins (Wongwathanarat
et al. 2010; Rantsiou et al. 2011; see also Blondin & Mezzacappa
2007; Fernández 2010) and magnetic fields (Endeve et al. 2010)
of pulsars, the stochastic nature of gravitational-wave (e.g.,
Kotake et al. 2009b, 2011; Müller et al. 2012), and neutrino
emission (e.g., Duan & Kneller 2009).

To go beyond the light-bulb scheme, in this study we explore
possible 3D effects in the supernova mechanism by perform-
ing 3D, multigroup, and radiation-hydrodynamic core-collapse
simulations. For the multigroup transport, the IDSA scheme is
implemented, which can be done in a rather straightforward
manner by extending our 2D modules (Suwa et al. 2010; Suwa
et al. 2011) to 3D. This can be made possible because we ap-
ply the so-called ray-by-ray approach (e.g., Buras et al. 2006) in
which the neutrino transport is solved along a given radial direc-
tion assuming that the hydrodynamic medium for the direction

4 The maximum mass for the LS180 EOS is about 1.8 M⊙ (e.g., O’Connor &
Ott 2011; Kiuchi & Kotake 2008).
5 On the other hand, they obtained 2D explosions for Shen EOS
(K = 281 MeV, H.-T. Janka, private communication).

is spherically symmetric. From a technical point of view, it is
worth mentioning that the ray-by-ray treatment is highly effi-
cient in parallization6 on present supercomputers, most of which
employ the message-passing-interface (MPI) routines. We fo-
cus here on the evolution of an 11.2 M⊙ star of Woosley et al.
(2002). We first choose such a lighter progenitor star, not only
because we follow a pattern in the 2D literature (e.g., Buras et al.
2006; Burrows et al. 2006), but also because the neutrino-driven
shock revival for the progenitor was reported to occur rather ear-
lier after the bounce in the 2D models by Buras et al. (2006).
We anticipate that the cost of 3D simulations would not be too
expensive for the progenitor. By comparing with our 1D and 2D
results, we study how the increasing multi-dimensionality could
affect the postbounce supernova dynamics.

The paper begins with descriptions of the initial models
and the numerical methods (Section 2). The main results are
presented in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS AND INITIAL MODELS

The basic evolution equations for our 3D simulations are
written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

∂e∗

∂t
+ ∇ · [(e∗ + P )v] = −ρv · ∇Φ + QE, (3)

dYe

dt
= ΓN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, Φ, are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total energy
density, gravitational potential, respectively. d

dt
denotes the La-

grangian derivative. As for the hydro-solver, we employ the
ZEUS-MP code (Hayes et al. 2006) which has been modified
for core-collapse simulations (e.g., Iwakami et al. 2008, 2009).
QE and ΓN (in Equations (3) and (4)) represent the change of
energy and electron fraction (Ye) due to the interactions with
neutrinos. To estimate these quantities, we employ the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. Although the cur-
rent IDSA scheme does not yet include heavy lepton neutrinos
(νx) and the inelastic neutrino scattering with electrons, these
simplifications save a significant amount of computational time
compared to the canonical Boltzmann solvers (see Liebendörfer
et al. 2009 for more details). As already mentioned, we employ
the ray-by-ray approximation, by which the 3D radiation trans-
port is reduced essentially to the 1D problem. Following the
prescription in Müller et al. (2010), we improve the accuracy of
the total energy conservation by using a conservation form in
Equation (3), instead of solving the evolution of internal energy
as originally designed in the ZEUS code. A Poisson equation (in
Equation (5)) can be solved either by the ICCG7 method in the
original ZEUS-MP code or by the multi-domain spectral method

6 Along each radial ray.
7 Incomplete Cholesky Conjugate Gradient.
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instability (Thompson et al. 2005; Masada et al. 2012), or energy
dissipation via Alfvén waves (Suzuki et al. 2008).

But before seeking alternative scenarios, it may be of primary
importance to investigate how the explosion criteria extensively
studied so far in 2D simulations could or could not be changed
in three-dimensional (3D) simulations. Nordhaus et al. (2010)
are the first to argue that the critical neutrino luminosity
for producing neutrino-driven explosions becomes smaller in
3D than in 2D. They employed the CASTRO code with an
adaptive mesh refinement technique, by which unprecedentedly
high-resolution 3D calculations were made possible. Since it
is generally computationally expensive to solve the neutrino
transport in 3D, they employed a light-bulb scheme (e.g., Janka
& Müller 1996) to trigger explosions, in which the heating and
cooling by neutrinos are treated by a parametric manner. Since
the light-bulb scheme can capture fundamental properties of
neutrino-driven explosions (albeit on the qualitative grounds), it
is one of the most prevailing approximations adopted in recent
3D models (e.g., Iwakami et al. 2008, 2009; Wongwathanarat
et al. 2010). A number of important findings have been reported
recently in these simulations, including a potential role of non-
axisymmetric SASI flows in generating spins (Wongwathanarat
et al. 2010; Rantsiou et al. 2011; see also Blondin & Mezzacappa
2007; Fernández 2010) and magnetic fields (Endeve et al. 2010)
of pulsars, the stochastic nature of gravitational-wave (e.g.,
Kotake et al. 2009b, 2011; Müller et al. 2012), and neutrino
emission (e.g., Duan & Kneller 2009).

To go beyond the light-bulb scheme, in this study we explore
possible 3D effects in the supernova mechanism by perform-
ing 3D, multigroup, and radiation-hydrodynamic core-collapse
simulations. For the multigroup transport, the IDSA scheme is
implemented, which can be done in a rather straightforward
manner by extending our 2D modules (Suwa et al. 2010; Suwa
et al. 2011) to 3D. This can be made possible because we ap-
ply the so-called ray-by-ray approach (e.g., Buras et al. 2006) in
which the neutrino transport is solved along a given radial direc-
tion assuming that the hydrodynamic medium for the direction

4 The maximum mass for the LS180 EOS is about 1.8 M⊙ (e.g., O’Connor &
Ott 2011; Kiuchi & Kotake 2008).
5 On the other hand, they obtained 2D explosions for Shen EOS
(K = 281 MeV, H.-T. Janka, private communication).

is spherically symmetric. From a technical point of view, it is
worth mentioning that the ray-by-ray treatment is highly effi-
cient in parallization6 on present supercomputers, most of which
employ the message-passing-interface (MPI) routines. We fo-
cus here on the evolution of an 11.2 M⊙ star of Woosley et al.
(2002). We first choose such a lighter progenitor star, not only
because we follow a pattern in the 2D literature (e.g., Buras et al.
2006; Burrows et al. 2006), but also because the neutrino-driven
shock revival for the progenitor was reported to occur rather ear-
lier after the bounce in the 2D models by Buras et al. (2006).
We anticipate that the cost of 3D simulations would not be too
expensive for the progenitor. By comparing with our 1D and 2D
results, we study how the increasing multi-dimensionality could
affect the postbounce supernova dynamics.

The paper begins with descriptions of the initial models
and the numerical methods (Section 2). The main results are
presented in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS AND INITIAL MODELS

The basic evolution equations for our 3D simulations are
written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

∂e∗

∂t
+ ∇ · [(e∗ + P )v] = −ρv · ∇Φ + QE, (3)

dYe

dt
= ΓN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, Φ, are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total energy
density, gravitational potential, respectively. d

dt
denotes the La-

grangian derivative. As for the hydro-solver, we employ the
ZEUS-MP code (Hayes et al. 2006) which has been modified
for core-collapse simulations (e.g., Iwakami et al. 2008, 2009).
QE and ΓN (in Equations (3) and (4)) represent the change of
energy and electron fraction (Ye) due to the interactions with
neutrinos. To estimate these quantities, we employ the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. Although the cur-
rent IDSA scheme does not yet include heavy lepton neutrinos
(νx) and the inelastic neutrino scattering with electrons, these
simplifications save a significant amount of computational time
compared to the canonical Boltzmann solvers (see Liebendörfer
et al. 2009 for more details). As already mentioned, we employ
the ray-by-ray approximation, by which the 3D radiation trans-
port is reduced essentially to the 1D problem. Following the
prescription in Müller et al. (2010), we improve the accuracy of
the total energy conservation by using a conservation form in
Equation (3), instead of solving the evolution of internal energy
as originally designed in the ZEUS code. A Poisson equation (in
Equation (5)) can be solved either by the ICCG7 method in the
original ZEUS-MP code or by the multi-domain spectral method

6 Along each radial ray.
7 Incomplete Cholesky Conjugate Gradient.

2

Energy and electron fraction change
due to neutrino interactions.
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Figure 1: Schematic representation of the evolutionary stages from stellar core collapse through the onset of
the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
star (PNS). The panels display the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are indicated in the lower half
of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).

3

(Janka+’06)�

νe + n → p + e-,  
νe + p → n + e+, etc.�

Entropy�

Density�
PNS�

Shock�

ex.) 
M = 17 Mo 
Z = Zo�

Explosion mechanism of CCSN�



•  Core-collapse supernova 
–  Final fate of massive stars @>~10MoA 
–  Unclear mechanism of explosion 
–  Neutrino heating mechanism 
–  Convection, SASI 
 

0.5

R [km]

e!

e!

1.00.5

Si

M(r) [M ]

e!

e!

e!

M(r) [M ]

e!

e!

e!

e!

e!

Fe, Ni

M(r) [M ]

R   ~ 3000

e!

e!

e!

!e

Ch
M(r) [M ]~ M

Fe, Ni

Si

0.5 1.0

R [km]

Si

R [km]

M(r) [M ]

Fe, Ni

0.5 1.0

Si

R [km]

R [km]

R [km]

Si

1.0M(r) [M ]

Si−burning shell Si−burning shell

Si−burning shellSi−burning shell

!e,µ," ,!e,µ,"

R  ~ 100g

Fe

,µ,"e,!,µ,"e!

#,n

,µ,"e,!,µ,"e!

RFe

RFe

( $>%

$

&)

RFe

$
c o)2%

$
<

formation
shock 

radius of

gR  ~ 100

#,n
#,n,

seed12

9Be,
C,

e!

RFe

position of
shock

formation

RFe

!

Neutrino Trapping

Shock Stagnation and    Heating,

,µ,"e,!,µ,"e!

~ 10

free n, p

!

!e

e

1.3 1.5

R  ~ 50!

p

n

sR  ~ 200

FeR

10

10

10

10

2

3

4

5

R   ~ 10ns

R
31.4

!

He

Ni

#

Si

PNS

r−process?

n, p

O

p
free n,

Fe

Ni

R!

hcM

~ 100

Bounce and Shock Formation

nuclear matter

~ 10

nuclei

(t ~ 0.11s,  

1.3 1.5

R  ~ 50!

Explosion  (t ~ 0.2s)
sR  ~ 200

PNS gain layer
cooling layer

R   ~ 10ns

R
1.4

!

Neutrino Cooling and Neutrino−

PNS

Driven Wind  (t ~ 10s)

n, p

nuclear matter nuclei

Shock Propagation and    Burst

R  ~ 100 kms
R!

(t ~ 0.12s)

heavy nuclei
hcM

$

c(t ~ 0.1s,     ~10¹² g/cm³)(t ~ 0)
Initial Phase of Collapse

Figure 1: Schematic representation of the evolutionary stages from stellar core collapse through the onset of
the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
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of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).
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neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
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the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
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neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
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Time evolution of neutrino luminosity
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ü Showing 101 models with solar metallicity.
The other models with lower metallicity have a similar trend (not shown here).

ü The difference of Lν is more than double.
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Compactness parameter

(*Not too much) Mass accretion�
→PNS mass�
→n luminosity�
→Explosion energy�
→56Ni mass�

Compactness parameter

– 2 –

non-isoenergetic scattering on ..

- gravity

- advection

The shock revival and its expansion are, if re-
alized, followed for 1.5 s or until the time when the
shock has reached at the outer boundary at 5,000 km.
During the long-time simulations of the SN dynamics,
we follow approximately the explosive nucleosynthe-
sis and the energy feedback into hydrodynamics as
described in Nakamura+’13 (XXREFXX) by soling
a 13 α-nuclei network including 4He,..,56Ni.

We adopt 100 progenitor stars (Woosley+)
(XXREFXX). The models are given in 0.2 M⊙ steps
between 10.8 M⊙ and 28.2 M⊙ and further up to
40 M⊙ in 1.0 M⊙ steps. We also include a very mas-
sive progenitor with 75.0 M⊙. The structure of these
stars, such as density profiles and the pre-collapse
masses are described in Ugliano+’12 (XXREFXX). It
should be noted that mass loss during main-sequence
and red-giant phases make the M ≤ 33 M⊙ progeni-
tors compact Wolf-Rayet stars with the radius ! 1011

cm.

3. RESULTS

We introduce a compactness parameter ξ which
is define as in Equation (10) of O’Connor & Ott

(XXREFXX) by the ration of mass M = 1.5 M⊙
and radius R(M) that encloses this mass:

ξ ≡ M/ M⊙
R(M)/1000km

, (1)

where we take M = 1.5 M⊙ (ξ = ξ1.5) and estimate
ξ1.5 at the moment of core bounce (XXCHECKXX)
because it is the maximum mass all the models in-
volve within our simulation range. The compactness
parameter ξ1.5 is displayed in Figure 1 as a function
of the zero-age main-sequence masses.

Figure 2 displays a snapshot of entropy distribu-
tion at tpb = 400 ms for selected 48 models. Some
less massive models, for example s11.2 and s11.4 on
the top line, have already carried their shock fronts
close to the outer boundary. On the contrary, a shock
of s24.0 still stalls around 200 km and ...

Figure 3 presents time evolution of average shock
radii for 6 models with ZAMS masses between 19.2
and 24.0 M⊙. The shock radii of two models, s20.0
and s22.0, evolve quickly compared to the other mod-
els, which clearly reflects the fact that these two pro-
genitors are less compact in this mass range (Figure
1).

- the reason why small-xi models explode earlier.

- small xi = small accretion rate

- one more figure (time-Mdot and ¡Rsh¿ for a few
models) ?
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What determines the CCSN properties is ...
mass accretion onto the PNS!

*Too much accretion leads to 
BH formation and/or  failed explosion.



Time evolution of neutrino luminosity
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Fig. 1. Mass distribution of some selected models at a pre-collapse stage (top panel) and at the time of
core bounce (bottom).

ξM ≡ M/M⊙

R(M)/1000km
. (1)

The previous studies used M = 2.5 M⊙ (O’Connor & Ott 2011; Ugliano et al. 2012) or 1.75 M⊙

(O’Connor & Ott 2013) and estimated ξM at the time of core bounce. On the other hand, the

outer radius of our computational domain (5000 km) is too small to contain 2.5 M⊙ for all

models and even 1.75 M⊙ for some less massive models (see Figure 1). In this paper, we estimate

ξM at M = 2.0 and 2.5 M⊙ (ξM = ξ2.0, ξ2.5) directly from the progenitor models. It should be

noted that our definition of ξ2.5 gives almost the same value as the compactness estimated at

bounce, because the radius R enclosing 2.5 M⊙ is far from the center and the radial velocity

vR there is very small (e.g., for s15.0 model, R = 1.7×109 cm and vR =−6.8×106 cm s−1). By

comparing the top to bottom panel of Figure 1, the position of the outer envelope (>∼ 108 km)

changes very slightly. This is because of the long dynamical time scale there compared to the

short time period before bounce (∼ 200 ms). Actually ξ2.5 of s15.0 model in our definition is

0.149, which is very close to the value (0.150) estimated by O’Connor & Ott (2011) at bounce.
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CCSN properties as a function of the compactness
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Strong shock heating produces

ejecta rich in nickel.

⑥

Compilation of CCSNe Simulations
for 101 Solar-metallicity Progenitors

Compact progenitor suffers from 
high mass accretion rate,

①

so that it takes longer time 
to revive a stalled shock

②

.. and leaves a massive remnants
at the center.

③
Accreted matter releases grav. energy
which is carried away by neutrinos.

④

High neutrino luminosity results in
an energetic explosion.

⑤

@t=t400 @t=tfin.

KN+’15, PASJ



Neutrino signals & detectors

"Delayed coincidence"

ü Water-Cherenkov detector
- Super Kamiokande (-Gd)
- Hyper Kamiokande

ü Reaction channels
- inverse beta decay
- electron scattering

Gd-loaded SK can drastically suppress the
background noise (Beacom & Vagins '04).



ü Water-Cherenkov detector
- Super Kamiokande (-Gd)
- Hyper Kamiokande

ü Reaction channels
- inverse beta decay
- electron scattering

Neutrino signals & detectors

Number of targets

ü Observed event rate:
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ü Water-Cherenkov detector
- Super Kamiokande (-Gd)
- Hyper Kamiokande

ü Reaction channels
- inverse beta decay
- electron scattering

Galactic event @ 8.5 kpc

Number of targets

ü Observed event rate:

ü Timing information (via IBD):
the bounce time within�3.0 ms (HK)
at 95% confidence level.

ü Pointing information (via e- scattering):
~ 6˚ (SK), ~ 3˚ (SK-Gd), ~ 2˚ (HK)
~ 0.6� (HK-Gd)

KN+’16, MNRAS

s17.0
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Time sequence of observations

Red Supergiant (RSG) progenitor
→ Type II SN

Wolf-Rayet (WR) progenitor
→ Type Ib/c SN

SBO

(pre-SN neutrino)

neutrino burst

R* ~ 1011 cm
→ Δt ~ R*/v ~ 100 s (a few minutes) !

R* ~ 1013-14 cm, shock velocity ~ 109 cm/s
→ Δt ~ R*/v ~ 104-5 s (a few hours - a day)

Distribute ALERT !
(SN Early Warning System; SNEWS)

Smith+’11, MNRAS
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Uncertainty (1) - distance

ü Observed event rate depends on the distance to SN.
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NB:$$
•  Will$need$alpha$informa0on$for$all$simula0ons$
•  To$what$extent$is$this$result$dependent$on$2D$

simula0on?$Do$$

make$event$rate$plot$

@SK$

@HK$

@DUNE$

ξ2.5$$0.005$$$$$$$$$$$$$$$$$$$$$$$$$$$0.42$$

Take$the$ra0o$to$be$a$more$robust$indicator$of$compactness$

101$models$

Horiuchi, KN+’17, J. Phys. G

The ratio can be a distance-
independent indicator.
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Uncertainty (2) - rotation

ü Core rotation affects SN neutrino properties.
2D simulations for s20.0 progenitor with initial Ω0 = 0.0 - 2.5 rad/s.

Lnueb <Enueb>
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Summary

ü Systematic study of CCSN properties (neutrino, explosion energy, etc.):

• Numerical simulations covering a wide range of progenitor mass 

(10.8 - 75 Msun, ~400 models) are demonstrated.

• Compactness is a good index of the explosion properties.

ü Neutrinos from a Galactic CCSN:

• The could tell us the compactness of CCSN progenitor,

• as well as the core bounce time (� 3.0 ms by HK),

• and the direction to the CCSN (~ 6˚ by SK, ~ 3˚ by SK-Gd, ~ 2˚ by HK).

ü Possible uncertainties in pinning down the compactness:

• distance to the CCSN

• rotation 


