48Caを用いたニュートリノマヨラナ性の 研究と次世代高感度化技術開発

新学術「地下から解き明かす宇宙の歴史と物質の進化」領域研究会 2019年08月24日

> 大阪大学核物理研究センター 梅原さおり umehara@rcnp.osaka-u.ac.jp

概要

- □ ⁴⁸Caの二重ベータ崩壊
- □ 現在の⁴⁸Ca二重ベータ崩壊測定
 - CANDLES
- □ 次世代検出器の開発
 - 蛍光熱量検出器、濃縮

二重ベータ崩壊測定

■ CANDLES シリーズ

■現在CaF₂シンチレータ

■将来48CaF2蛍光熱量検出器(シンチレータ&ボロメータ)

CANDLES

@Kamioka Observatory

CANDLES III

CANDLESコラボレーション

エネルギースペクトル

□ 131日の測定結果

	結果(27結晶)
0νββ検出効率	0.39 ± 0.06
事象数(exp)	0
予想されるBG量	~1.2
0νββ半減期	>6.2×10 ²² year
測定感度	3.6 × 10 ²² year

* 先行検出器ELEGANT VI 測定時間: 4947kg•day(2年強) 半減期 : 5.8×10²²年

梅原さおり、新学術「地下宇宙」領域研究会、2019年08月24日

データ 全Simデータ 外部放射性不純物 — 結晶放射性不純物 — 中性子捕獲γ線 エネルギースペクトルと シミュレーション Counts $Q_{\beta\beta}$ 1010 10 19_{000} 5000 5500 Energy(keV) 3500 40004500 ⁴⁸Caのニュートリノを放出しな い二重ベータ崩壊測定 →世界最高感度測定を達成

■ 2vββの半減期測定→BG調査:次世代検出器開発へ
 ■ NEMO&それ以外のグループの半減期検証

次世代検出器開発:測定感度 □ CANDLES シリーズ

CANDLES III 次世代検出器 ⁴⁸Ca 存在比 0.187% 50%~ ⁴⁸Ca 量 0.35 kg 600 kg ~ エネルギー分解能 1.0% (required) 6% $\langle m_{\nu} \rangle$ 感度 0.5eV 数 meV Cooling CaF₂ Massive ⁴⁸Ca & high energy resolution 特徴 Low BG $IH \Rightarrow NH$

次世代検出器:蛍光熱量検出器

□ 次世代検出器で予想されるバックグラウンド

■ 2vββ事象:高エネルギー分解能で低減→熱量検出器

■エネルギー分解能0.5%、1トン48Caで~0.02事象/年

■ α線(²³⁸Uのα崩壊:Q_α=4.27MeV)

■高い粒子弁別能力で低減→蛍光熱量検出器

梅原さおり、新学術「地下宇宙」領域研究会、2019年08月24日

D02班協力

CaF_2 蛍光熱量検出器

□ CaF₂蛍光熱量検出器開発の歴史

年	1992	1997	2017
目的	DBD	DM	DBD
結晶	CaF₂ (Eu) (Eu :0.01~0.07%)	CaF ₂ (Eu) (Eu :0.30%±0.08)	CaF ₂ (pure)
結晶サイズ	2.5 g	300 mg	312 g
温度センサー	NTD-Ge	NTD-Ge	MMC
光センサー	Si-PD	Ge wafer	Ge wafer

□ 我々の開発

- (Euをドープしていない)CaF2結晶
 - ■高純度結晶を作りやすい
 - ■低温で発光量増加
- 温度センサーとしてMMCを使用

蛍光熱量検出器

共同研究:韓国Kim Yong-Hamb氏ら

蛍光熱量検出器

□ CaF₂用センサー・信号読み出しの最適化

集光システムの設計

■光信号が温度上昇を低減、場所依存性の低減 ■温度センサーの面積を小さく、厚みを大きく ■温度センサーの複数化

開発状況:大阪熱量計

□ CaF2 蛍光熱量検出器開発

■納品、冷凍機の設置

■ 冷却テスト:10mK

■結晶なしの冷却テスト終了

■これから結晶の冷却テスト

結晶ホルダー

次世代検出器:濃縮

□ カルシウム48

- 天然同位体比が低い:0.19%
- 濃縮によって感度向上が可能
- ■一般には濃縮は行われていない
- □ 新しい濃縮手法を開発
 - 化学濃縮、レーザー濃縮、電気泳動濃縮

■ 偏向用レーザーの照射システムの改良

次世代検出器:濃縮(偏向法)

□ 高濃度化・高回収率化・大量化

長い偏向照射距離:吸収放 出の繰り返し

■ 元ビームの絞り込み

■ 面状多層のビーム形状

□ カルシウム回収機構の構築

■ ⁴⁸Caの回収

■ Depleted Caの回収

■1回/日頻度(10g→100g)

■真空維持で行う

□ 研究期間後半に装置運転

■gオーダーの濃縮

梅原さおり、新学術「地下宇宙」領域研究会、2019年08

次世代検出器:濃縮(レーザー)

- □ 青色半導体レーザーの歴史
 - 新しい光源:2000年ごろに実用化
 - 350-500nmの幅広い波長域

■400nm(Blu-ray Disc用)、450nm(照明用)の高出力化開発

- 加工用途では出力1kWレーザー装置の報告あり
- □ 本研究用途に、422.7nmレーザー開発

■ 20%の高い電気-光変換効率で

https://www.ushio.co.jp/jp/technology/lightedge/201206/100438.html

梅原さおり、新学術「地下宇宙」領域研究会、2019年08月24日

レーザー総研 大阪大レーザー研

次世代検出器:濃縮(レーザー)

	青色半導体レー ザー	赤外半導体レーザー の2倍波	チタンサファイア レーザーの2倍波		
ビームあたりのパ ワー	100 mW	500 mW∼1 W	2 W		
ワット単価	500~600 万円/W (サンプル購入価格)	500~1000万円/W	1000万円/W		
低コスト化の可能性	高い	低い	とても低い		
長期安定性	高い	普通 (波長変換を行うため)	定期的な調整が必 要		
電気→光変換効率	20%	5~15%	1%		
装置のフットプリント	30 × 30 cm ²	50 × 40 cm ²	80 × 80 cm ²		

□ 青色レーザーの利点

■ 書名レーザーの比較

■変換効率、安定性、今後の低コスト化

まとめ

- □ 低バックグラウンド
 □ 蛍光熱量検出器
 □ 濃縮
 測定
 - 高純度結晶
 - 結晶入れ替え
 - 2年の測定
 - Ονββ半減期
 - 2vββ半減期
 - 高純度結晶技術

- 0.5%エネルギー分解能 mol/年の濃縮装置
 - 熱センサー
 - 粒子弁別能評価
 - 小結晶でのエネル ギー分解能
 - 実用サイズ結晶で のエネルギー分解 能

- 濃縮原理検証
- 実用濃縮装置開発
- 青色レーザー高出 カ化
- ■gオーダーの濃縮

数meV感度の測定装置開発の基礎技術