Experimental Aspects of Nuclear Matrix Elements for Double Beta Decays and Astro Neutrinos Hiro Ejiri RCNP Osaka

Why Nuclear Matrix element M

- **1. Get v-mass** $m = [1/M] [T_{1/2} G]^{-1/2}$
- 2. Detector design sensitivity $m = k m_0 / M [B/N]^{1/4} m_0$ for S=1/ty
- **M** = **NME**, **B**=**BG**/ty **N**=**I**sotope mass ton
- M Factor 3 in M is equivalent to
- Factors 100 in BG/ton year or N tons
- **3. Theoretical M: factor 10 uncertainty**
- Need experimental input to M

- **1.** Neutrino nuclear responses and g_A quenching
- 2. Experimental studies for v nuclear responses
- **3.** Low multipole low momentum responses
- 4. Medium momentum responses for DBD and SN.
- 5. Neutrino responses for astro neutrinos and DBD
 - H.Ejiri J.I. Fujita Phys. Rep 38 1978 85
 - H. Ejiri Phys. Rep. 338 2000 265
 - H. Ejiri J. Suhonen K. Zuber Phys. Rep. 797 1 2019
 - H. Ejiri Frontiers 10.3389/fyhs. 2019. 00030
 - H. Ejiri NNR19 May 2019 Neutrino Response Workshop 2019

Nuclear Response = M : M=NMEs

 $T = G [M (m_v) / A_v]^2$ \downarrow Nuclear phys Particle/astro phys.

A. DBD Neutrino-less ββ M

 $M = g_A^2 M_A - g_V^2 M_V + g_A^2 M_T$ with bare $g_{A,V}$ for free N.

p

Μ

 $M_A = k_A^2 M_A (model), M_V = k_V^2 M_V (model),$

 $k_A = g_A^{eff}/g_A$: Effects which are not in M_A (model)

B. Astro v and anti-v response

 $M_A = k_A M_A (model), k_A = g_A^{eff}/g_A$:

DBD v and Astro v are q=5-150 MeV/c, J^{\pm} with J=0-5

Since 1960 for μ GT as e^{eff}/e .

- A : Theoretical way ab initio NME $k_A = g^{eff}/g=1$ Cal. for g^{eff}/g for meson isobar , many body, medium
- B: Experimental way : present Exp g^{eff}/g = Exp NME/Model NME for single beta M, Use Exp. g^{eff}/g and Model QP, QRPA to get NME

CERs for CC

$$M = g_A^2 M_{DA} - g_F^2 M_D$$

Sensitive to NN, N Δ/π nuclear medium effects

 $M(EXP) = g_AM, g_FM by$ lepton and nuclear CERs to help calculations which are sensitive to nn & medium.

Response experiments by RCNP/Osaka

RCNP Osaka p,He,

MuSIC **µ**

Spring-8 GeV- MeV pol. γ

Oto under gr. $\beta\beta - \nu$,

B(GT) sum strength

Universal reductions of axial vector $\beta \& \gamma$ in low p

 $\begin{array}{ll} k=k(\tau\sigma)\;k(NM)\sim\!0.25 & \text{with respect to }QP\\ k=k(\tau\sigma)\sim\!0.5 : & \text{Nucleonic long range }\tau\sigma\;GR\\ k(NM)\sim\;g^{\text{eff}}_{A}/g_{A}\sim\!0.6 : & \text{Short range nucl. medium }\Delta\;\pi\\ \text{H, Ejiri J. Suhonen J. Phys. G. 42 2015}\\ \text{H. Ejiri N. Soucouti, J. Suhonen }PL B 729 \ 2014 \ .\\ \text{L. Jokiniemi J. Suhonen H. Ejiri }AHEP2016 \ \text{ID8417598} \end{array}$

SD Spin dipole τ [σ xrY1]2⁻ Maior of DBD

^{74,76}Ge (³He,t)^{74,76}As Angular distribution

H. Akimune, H. Ejiri, RCNP Catania, KVI, Munster • •

Kinematical q dependence and NME q dependence

$$\frac{d\sigma_i}{d\Omega} = K_i(\alpha)F_i(\alpha, q)J_i(\alpha)^2\kappa^{eff}(q)^2B_i(\alpha),$$

where $K_i(\alpha)$ and $J_i(\alpha)$ with $\alpha = F$, GT, and SD are the kinematic factors and the volume integrals of the interaction, respectively. The kinematic q-dependence is given

(5)

g_A^{eff}~const over q=0-100 MeV/c

γ_i from ¹⁰⁰⁻ⁱNb: relative strength Life time : the absolute strength
H. Ejiri Proc. e-γ conference Sendai 1972, H. Ejiri et al., JPSJ 2014
NNR19:I. Hashim , Hashim H. Ejiri et al., PRC 97 (2018) 014617

0.1

100

Jokiniemi L, Suhonen H, Ejiri H, and Hashim I.H. 2019 P L B 794 143.

k~0.4 for pnQRPA

I. Hashim H. Ejiri, MXG16, PR C 97 2018

$$M^{0\nu} = \left[\frac{g_A^{eff}}{g_A}\right]^2 \left[M_M^{0\nu}(GT) + M_M^{0\nu}(T)\right] + \left[\frac{g_V}{g_A}\right]^2 M_M^{0\nu}(F),$$

M(α) Model pnQRPA

⁷⁶Ge M(GT)=5.4, M(T)=-0.36 M(F)=1.76 Jokiniemi, Ejir, Suhonen PR C 98 2018

 $g_A^{eff}/g_A = 0.5$ leads to reductions 0.2 for M(GT), 0.4 for M^{0v}, 0.16 for DBD rate, ~40 for DBD detector

Nuclear structures on 2ν and $0\nu\beta\beta$ NMEs

H. Ejiri, J. Suhonen and K. Zuber / Physics Reports 797 (2019) 1-102

2vββ NMEs square exp, triangle FSQP(Ejiri) J. Phys. 2017

DBD strategy Goal IH mass 20-15 meV

Yes Majorana and IH and mass, No Dirac or NH

• $m = k m_0 / M [B/N]^{\frac{1}{4}} m_0 \text{ for } S = 1/ty$

• **M** = **NME**, **B**=**BG**/ty **N**=**I**sotope mass ton

v-mass from 200 meV to 20 meV :

• BG by a factor 100 and N by 100. Exp. with Large M, large N, small BG

DBD 0vββ NMEs and DBD mass sensitivity

Nuclear sensitivity m⁰ = mass for 1/t y

Ge requires a factor 20 less BG Mass sensitivity mass to be detected $m_m = m^0 D$

 $M^{0\nu} = k^2 M(QRPA) \sim 2$, $k = (g^{eff}/g) \sim 0.6 - 0.7$

Neutrino mass regions depend on NME

Possible DBD detector with IH mass 20 meVYesMajorana and IH and massNoDirac or NH

m= k m₀ /M [B/N] ¹/₄ m₀ for S=1/ty M = NME=g_A²M(QRPA) B=BG/ty N=Isotope mass ton

m ₀	In case M	BG/t y	N ton /5y	Isotope A
40	2	0.1	3	Ge 76
20	1.5	1	6	Se 82
20	2	1	2	Mo 100
20	1-2	1	30-2	Xe 136

7hanks for your attention Greenary Nimph 翠の精

Remarks

 CER: (³He,t) provides NMEs J= 0-2, p=5-100 MeV/c used for evaluating β⁻, v astro v and DBD responses.
 CER: (μ,v_μ) shows MGR (giant resonance) at 12 MeV provides NMEs J= 0-3, p=50-100 MeV/c

used for evaluating β^+ , ν astro $\overline{\nu}$ and DBD responses.

3. M_{EXP} (GT,SD) are reduced from M_{QP} by k^{eff}~ 0.2-0.25,

 $k_{ts} \sim 0.4-0.5$ by nucl. $\tau\sigma$, $k_m \sim 0.4-0.6 = (g_A^{eff}/g_A)$.

4. DBD NMEs ~ 0.5 NMEs(QRPA), and

16 times less BG or more DBD isotopes than QRPA.

Estimation of M(SD) for $\beta\beta$ nuclei

$$R = \frac{B(SD)}{B(F)} \Big/ \frac{\sigma_{SD}}{\sigma_{IAS}} = \frac{B'(SD)}{B'(F)} \Big/ \frac{\sigma'_{SD}}{\sigma'_{IAS}} \qquad B(SD) = \frac{|M(SD)|^2}{2J_i + 1}$$

Benchmark Nucl	ei		M(SD)	$\sigma(SD)/\sigma(IAS)$	R
74Ge <-> 74As	2- g	ξ.S.	1.68	3.80±0.20 E-02	2.38 ± 0.25
$^{122}Sn < -> ^{122}Sb$	2- g	g. S .	3.75	1.71±0.23 E-01	6.60±0.89
$^{124}Te < -> ^{124}Te$	2- g	g. s.	2.74	8.00±1.50E-02	5.30±0.74
ββ decay Nuclei			M(SD)		
⁷⁶ Ge <-> ⁷⁶ As	2- g.s.		1.57 ± 0.24	2.71±0.13 E-02	2.38±0.66
¹²⁸ Te <-> ¹²⁸ I	2-134	keV	2.82±0.48	7.75±0.50 E-02	5.95 ± 0.60

Weak int.: spin isospin $\tau\sigma$ N⁻¹N GR and N⁻¹ Δ GR

 k^{eff} (Δ)~ 0.6 $\chi_{\tau\sigma}$: susceptibility

High E resolution (³He,t) CERs at RCNP Osaka

$B(SD) = [\sigma(SD)/\sigma(IAS)]B(IAS) K, B(SD) = M(SD)^2$

$\sigma(SD)/\sigma(IAS)$ for ⁷⁶Ge, B(IAS) =N-Z, and K is from the measured cross section ratio for ⁷⁴Ge with B(SD) from ft

	M(CER)	M (FSQP)
⁷⁶ Ge (SD)	1.57 ±0,24	2.1
¹²⁸ Te (SD)	2.82 ±0.48	3.4
¹³⁰ Te (SD)	3,33 ± 0.59	3.7

M(ESQP) with k~0.25 from ft data in neighboring nuclei. k~0.25, with 0.5 from $\tau\sigma$ and medium(g_A) effect 0.5

SD RCNP H. Akimune, H. Ejiri, RCNP Catania, Munster, KVI, •