熱中性子捕獲反応^{157,155,nat}Gd(n,γ)のγ線エネルギー・角度 分布の精密測定とγ線生成モデル(ANNRI-Gd)について

作田誠 (岡大理)、2019年8月24日「地下宇宙」研究会(大阪大学)

For ANNRI-Gd Collaboration (Okayama, JAEA, SRM, Mainz, EcolePolytechnique,

Padova): K. Hagiwara, T. Tanaka, A. Ali, M.S. Reen, P.K. Das, S. Lorenz, I. Ou, T. Sudo, Y. Yamada, T. Mori, R. Dhir, Y. Koshio, M. Sakuda, T. Yano, A. Kimura, S. Nakamura, N. Iwamoto, H. Harada, M. Wurm, W. Focillon, M. Gonin, E.Gazzola and G. Collazuol

<u>概要(とまとめ)</u>:

- 熱中性子反応^{157,155,nat}Gd(n,γ)からのγ線のエネルギー分布と角分布の高統計、高エネルギー分解能測定 をJPARC-ANNRI測定装置を用いて行った。
- 2. また、γ線エネルギー分布を再現するMonte Carloモデル(ANNRI-Gd Model)を作成した。[論文1-2]
- 3. これらの結果について報告する。

論文:

- (1) γ -ray spectrum from thermal neutron capture on ¹⁵⁷Gd, K. Hagiwara et al., PTEP 2019, 023D01, pp26.
- (2) γ-ray spectrum from thermal neutron capture on ^{155, nat}Gd, T.Tanaka et al., arXiv:1907.00788[nucl.ex], PTEPへ投稿済・コメント修正中, pp13. //
- (3) 2γ angular correlations in ^{155, 157}Gd(n, γ) reaction, 原稿修正中(Preliminary).
- * ANNRI-Gd model 公開 URL: http://www.physics.okayama-u.ac.jp/~sakuda/ANNRI-Gd_ver1.html
 - Already being used in SK-Gd, XENONnT and NEOS (Korea).

[+地下素核謝辞:γ rays from giant resonance of ¹²C, M.Reen et al, Phys.Rev.C100,024615(2019).]

1) Gdを使う実験への応用増える.

- 1. 液体シンチレータ検出器
 - θ₁₃ニュートリノ振動実験: DChooz, Daya Bay, RENO
 - Sterile neutrino 探索: NEOS, PROSPECT, NEUTRINO-4, DNSS, JSNS²
 - 暗黒物質探索:LZ
- 2. 水チェレンコフ検出器
 - SRN探索他: SK-Gd
 - 暗黒物質探索: XENONnT (nVETO)

Gd応用での留意点:Gd反応で合計8MeVのγ線が2-8個(平均4個)出る。 検出器を立体角100%覆わないか、γ線エネルギー検出に閾値(~MeV)があると、検出効率の評価に誤差が出る。E_{sum}=E₁+E₂+E₃+E₄=8MeV → γ線生成分布が正確なGd反応モデルが重要。

2)低エネルギー中性子原子核反応 n+A (A>25)

• E_n<1MeV: (n,p),(n,α) 反応はCoulomb障壁のため抑制される。

中性子捕獲反応断面積Gd(n,γ) vs E (eV)

熱エネルギー領域に共鳴吸収が存在する元素: ¹¹³Cd, ¹⁴⁹Sm, ¹⁵¹Eu, ^{157,155}Gd.

1. JPARC-MLF Experiment Gd(n,γ)

2012 B0025 -natural Gd target
 Experimental period : 2013/Mar/14-17
 Target : Natural Gd(99.99% 5mm×5mm×10,20µm)
 Total event : 3×10⁹events
 Calibration source :⁶⁰Co,¹³⁷Cs

2014 B0124 -enriched Gd (¹⁵⁵Gd, ¹⁵⁷Gd) targets

Experimental period Target

- : 2014/Dec/11-16
 - : Enriched Gd(A=155(91.65%),157(88.4%)),
 - $Gd_2O_3Powder$
 - : 8×10^9 events

Total event Calibration source

:²²Na, ⁶⁰Co,¹³⁷Cs, ¹⁵²Eu, NaCl

1-2) JPARC 中性子Beamline (BL04) とANNRI 検出器

- JPARC/BL04 Pulsed Neutron Beam
 - > $1.3 \times 10^{11} n(/s/m^2)$ at $E_n = 1.5-25$ meV at Power 300kW, ($\Delta E_n/E_n \sim I\%$),

事象毎の中性子エネルギーがTOF 21mにより ΔEn/En~1%で測定できる。

ANNRI (Accurate Neutron-Nucleus Reaction Measurement Instrument)

- ANNRI ゲルマニウム検出器(ΔE_Y=9keV@1.3MeV)
 - Acceptance (Coverage) : Ge: Cluster 15%+Co-axial 1% =16%
 - BGO VETO: 44%
- Ge結晶1本クリーンヒット、周りのGe結晶をコンプ トン抑制として解析する。Prompt γ が選べる。

1-2)^{157.155}Gd(n,γ)のγ線分布の性質

р9

確率分布P($E_a \rightarrow E_b$), $E_\gamma = E_a - E_b$

- ✓ Fermi Golden Rule:確率分布=|遷移行列|^{2*}(終状態の準位数)
- ✓ E_{γ}^{3} favors Large E_{γ} , f(E_{γ}) favors Large E_{γ} , But ρ(E_{b}) favors Very Small E_{γ} .
- ✓ Eγ>3MeVでは確率分布そのままが見える。平均4個のγ線放出、合計Q=8MeV。

1-3)結果: 157,155 Gd(n, γ) E γ spectrum (Data) and MC(ANNRI-Gd model), for multiplicity=1,2,3,4. (p10)

• 157 Gd(n, γ) E γ (single) spectrum

¹⁵⁵Gd(n, γ) E γ spectrum

^{155,157}Gdと^{nat}Gdのデータのつじつま

■ ぴったり一致

1

▲ 角度相関分布の定義:W(z) for z=cosθ=[-1,1].

Select 2 γ -ray dataset (E₁ and E₂) and make z distribution.

$$N_{ij} = N_0 \varepsilon_i(E_1) \varepsilon_j(E_2) W(Z)$$

$$(Z = \cos\theta)$$

$$W(Z) \propto \frac{N_{ij}}{\varepsilon_i(E_1)\varepsilon_j(E_2)}$$

2-1) カスケード(J_A→J_B→J_C)2γの角度相関W(z): <u>Z=COSθ</u> (skip-7)

角運動量(j,m)の γ1 をz軸方向にとると、軌道角運動量は Lz=0、 m=+1、-1 のみ許される. 従って、γ2 の(J,M)のMの重みp(M)は一 様でない。 そうすると、γ2 の角分布W(z) は一様でない。

 $W(\theta) \propto \sum_{M} p(M) |X_{IM}(\theta, \phi)|^2$

 $\frac{dP}{d\Omega} \propto \left| \vec{X}_{JM}(\theta, \phi) \right|^2$

もしp(M)=1(for all M)一様なら,
 W(z)は一様になる。なぜなら、

$$\sum_{M} \left| \vec{X}_{JM}(\theta, \phi) \right|^2 = \frac{2J+1}{4\pi}$$

$$\begin{array}{c} 2-2) \mbox{$\stackrel{1.17}{$\stackrel{1.33}$\stackrel{1.33}{$\stackrel{1.33}{\stackrel{1.33}{\stackrel{1.33}{\stackrel{1.33}{$\stackrel{1.33}{$\stackrel{1.33}{$\stackrel{1.33$$

2-4) ^{157,155}Gd(n,γ)の大部分の連続遷移の任意の2γ には角度相関は見られなかった。

We observe no correlations for bulk of 2γ rays from continuum.

3. まとめと課題

- 熱中性子反応^{157,155,nat}Gd(n,γ)からのγ線のエネルギー分布と角分布の高統計、高エネルギー分解能測定 をJPARC-ANNRI測定装置を用いて行った。また、γ線エネルギー分布を再現するMonte Carloモデル (ANNRI-Gd Model)を作成した。[論文1-2]
- 2. ANNRI-Gd Modelは公開されて、SK-Gd, XENONnT and NEOS (Korea)等で使われている。

公開 URL: <u>http://www.physics.okayama-u.ac.jp/~sakuda/ANNRI-Gd_ver1.html</u>

- 3. 角度相関の論文まとめはこれから。相関のある部分は、全体データの数%。
- 4. ニュートリノ実験へのFeedback(応用)としては、これで満足している。

課題:

 原子核物理業界ではGdや重い核のγ線遷移について、バックグランドの少ない2γ同時計測データのみを解析 し、強いE1遷移の他の弱いM1、E2強度のPSF研究が行われており、PTEPから我々に次の論文ではこの基 礎的な問題を解決するように執拗に要請を受けている。準位密度ρ(E)と光強度関数 f(E_γ)を同時に決める のは容易ではない。

[我々は、95%の分布を決めることを優先し、数%の弱い遷移の解析をやる暇がない、と言っても許してくれない。] 論文:

- 1) γ-ray spectrum from thermal neutron capture on ¹⁵⁷Gd, K. Hagiwara et al., PTEP 2019, 023D01, pp26.
- 2) γ-ray spectrum from thermal neutron capture on ^{155, nat}Gd, T.Tanaka et al., arXiv:1907.00788[nucl.ex], submitted to PTEP, pp13. 修正版作成中。//
- 3) 2γ angular correlations in ^{155, 157}Gd(n, γ) reaction, 原稿訂正中 (Preliminary).