

南野彰宏(横国大) 2019年8月24日 新学術「地下宇宙」領域研究会

- D01班の研究概要
- ·環境中性子測定
- ラドン除去(竹内さん)
- ・レーザー共鳴イオン化
- •スクリーニング(市村さん)
- データベース(市村さん)
- (表面アルファ) (伊藤博士さん)
- ・まとめ

F		三五
Γ		

- ppb: parts-per-trillion: 10⁻⁹
 - Xe中にKrが1ppb = 10⁹個のXe原子に対してKrが1個
- ppt: parts-per-trillion: 10⁻¹²
- ppq: parts-per-quadrillion: 10⁻¹⁵

神岡地下実験室

- 水換算での岩盤の厚さ(宇宙線μ遮蔽): 2700 m.w.e
 - 宇宙線µフラックスはグランサッソの約5倍

D01班の研究概要

各プロジェクトの数値目標

- 環境中性子
 - 液シン検出器の地下環境中性子測定の閾値を1 MeVまで下げるために α線BGを1/10以下に低減する。
- ラドン測定
 - Gd水中のラドン測定(濃縮(1週間)): 0.1 mBq/m³
 - Gd水中のラドン測定(リアルタイム(1日)): 0.5 mBq/m³
- レーザー共鳴イオン化
 - Xe中のKr 測定: O(10) ppqレベル
 - Rn共鳴イオン化の初観測
- スクリーニングシステム
 - ・世界一の低BG: 連続成分がO(10) counts/day/kg(Ge重さ)

環境中性子測定

中性子測定コンソーシアム の活動を継続

中性子測定コンソーシアム

- •新学術「地下素核」の領域をまたいだ研究
 - ・2015年5月に立ち当げ後、若手を中心に活動。
 - 中性子測定コンソーシアム \rightarrow CHI SO KO \rightarrow 地底
 - メーリングリスト: chisoko アット list.waseda.jp
 - メンバー(30名): <u>http://bit.ly/30ifAuO</u>
 - メンバー随時募集中。気軽に田中さん(早大)までご連絡を。
 masashi.tanaka アット aoni.waseda.jp

環境中性子測定の動機

- 極低バックグラウンド環境下での稀事象探索実験において環境
 中性子は主要な背景事象源のひとつであり、そのフラックス、
 エネルギー分布、時間依存、飛来方向等の詳細な理解が探索感
 度向上のためには重要となる。
- ・中性子測定コンソーシアムは、実験グループを跨ぎ測定技術・ 機材等を共有し、測定手法を確立したうえで、多地点・長期間 の測定を行いその結果を公表・共有することを目的としてい る。

³Heと中性子の反応断面積

- 検出原理
 - $^{3}\text{He} + n \rightarrow^{3}\text{H} + p + 0.76 \text{ MeV}$
 - 熱中性子(~0.025eV): 高い感度
 - 高速中性子: 減速材(ポリエチ)で熱化し検出
 - スペクトルを仮定し、Geant 4で検出効率の見積り(不定性大)

. 1

鈴木さん修論(早稲田、2016年度)

液体シンチレーター検出器

• 検出原理

p-キシレン

- 液シンBC-501A: 溶媒(キシレン)+ 発光物質 + 波長変換剤
- 中性子が陽子を反跳したエネルギーをシンチ光で観測。
- 波形弁別で γ 線(β 線) BGは低減できるが、 α 線BGはきつい。

中性子測定コンソーシアムの成果 (一部)

- ³He比例計数管による神岡地下の環境中性子測定
 - 詳細は水越さんのポスターを参照
 - 論文: https://doi.org/10.1093/ptep/pty133

4つとも³He比例計数管の測定

Flux (×10-6 cm-2 s-1)	Thermal (<0.5 eV)	Non-thermal	
Kamioka (This result, Mizukoshi)	7.9 ± 0.2 +0.7 -0.7	$15.6 \pm 0.5 + 1.2$	
Kamioka (Minamino 2004)	8.26 ± 0.58	11.5 ± 1.2	
Gran Sasso (A. Lindi 1988)※	13.3 ± 1.5	10.2 ± 1.1	
LSM (K. Eitel 2012)※	14.3 ± 1.3	4.2 ± 2.8	

 \times They used the different definition of flux. We compared in the same definition.

グランサッソと神岡は同程度(岩盤中のU/Thの (α,n) +自発核分裂が主なソース)

鈴木さん修論(早稲田、2016年度)

中性子測定コンソーシアムの成果 (一部)

- 液シン検出器による神岡地下の環境中性子測定
 - 神岡地下は地上の約1/1000
 - α線BGのためUnfoldingが10MeV以下で困難。
 - α線BGを1/10以下に低減したい。

液シン(BC501A, 4.37kg) PMT(浜ホト H6527)

環境中性子測定の目標とプラン

- 目標
 - •多地点(神岡、グランサッソ)・長期間(数年)・³He+液シンで測定
 - シミュレーションとの比較による体系的理解

液シン検出器低BG化の速報

- •低BG化:ステンレス容器(内側反射材なし)+液シンの純化
 - Bi-Poのrateは²²²Rnの半減期で減少後、4mBqで下げ止まり。
 - 今のところ低BG化前とオーダーで同じ。更なる低BG化が必要。

レーザー共鳴イオン化

レーザー共鳴イオン化の目標とプラン

- 目標
 - O(10) ppqの感度でのXe中のクリプトン測定
 - Rnの共鳴イオン化信号の初観測と元素選択的Rn除去
 - 硫酸ガドリニウム水中のGd³⁺イオン発光寿命測定

	2019	2020	2021	2022	2023
	装置移設・	 整備 クリフ	。 。トン測定		
レーザー共鳴 イオン化	東大東海キャ	ンパス	ラドン測定		
			Gd ³⁺ イオン発光測定		

図は Y. Iwata, H. Sekiya, C. Ito, NIM A 797 (2015) 64-69 から

⁸⁵Kr

- 液体Xeによる暗黒物質探索のBG(Q値687keVのβ崩壊)
 - •工業的にXeガスを生成するときにKrがO(10~100) ppbレベルで混入
 - 85 Kr/Kr ~ 10^{-11} の同位体比で混入
 - XENONntでは蒸留でKr混入率をO(10) ppqレベルまで低減

Y. Iwata, H. Sekiya, C. Ito, NIM A 797 (2015) 64-69.

20

レーザー共鳴イオン化によるKr測定

• Arガス、Xeガス中のKrを0.4、0.8 pptまで測定成功

測定ガスをPulsed Supersonic Valve (PSV) でパルスで導入、
 212.6 nmのパルスレーザー(~10mJ/pulse, 幅~5ns, 10Hz)でイオン化、

Y. Iwata, H. Sekiya, C. Ito, NIM A 797 (2015) 64-69.

※1 Eur. Phys. J. C (2014) 74:2746

レーザー共鳴イオン化によるKr測定

- •利点:元素選択的イオン化によりBGが少ない
- 欠点: 検出効率が低い(効率~10^{-5~-6})ため測定感度がO(1) ppt
- 目標: 「ガスクロ+MS測定」 ※1の感度(8 ppq)を超える
 - Kr濃縮の導入 + TOF-MFの排気をCold-fingerで回収

レーザー共鳴イオン化によるRn測定

- Rn測定
 - ・共鳴4波混合により145.2 nmの真空紫外光レーザーを生成。
 - まずはRnの共鳴イオン化信号の初観測
 - •次に電場等で元素選択的Rn除去(Xeの干渉がない)
 - この真空紫外光レーザー生成技術はKr測定の感度改善にも応用化

レーザー共鳴イオン化によるGd³⁺発光測定

- SK-GdでのGd³⁺発光の寿命を測定
 - SK-Gd: 硫酸ガドリニウム濃度 0.02%(1期)~0.2%(2期)
 - Gd^{3+} : ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$ (312 nm)
 - Nd:YAGレーザー 第4高調波(266 nm)で励起 → 分光器 → PMT検出

Table 2

$[N_3^-]$ (mol 1 ⁻¹)	Eu ³⁺ (H ₂ O)	Eu^{3+} (D ₂ O)	Gd^{3+} (H ₂ O)	Tb ³⁺ (H ₂ O)
0	112.4±0.7	4020.0±6.0	1480.0 ± 20.0	442.0±2.0
0.00001			1380.0 ± 14.2	
0.00005			1025.0 ± 11.6	
0.0001		3880.0 ± 5.0	850.0 ± 11.2	
0.0002			548.0 ± 9.3	
0.0004			215.0 ± 3.2	
0.0006			170.0 ± 2.6	
0.0008			152.0 ± 2.1	
0.0010		911.0±3.6	136.0 ± 1.4	
0.05		191.3±0.9		
0.01	111.4 ± 0.6	95.4±0.7		441.0 ± 1.8
0.02	94.1 ± 0.4	50.3 ± 0.6		435.4±1.8
0.04	44.8 ± 0.4	31.5 ± 0.3		416.7 ± 1.4
0.06	31.6±0.2	22.0 ± 0.2		367.7±1.5
0.08	24.1 ± 0.2			313.8±1.1
0.10	20.5 ± 0.1	16.0 ± 0.1		244.2 ± 1.2
0.15				139.7 ± 1.4
0.20	11.6 ± 0.1			92.0±0.0
0.30				65.2±0.6
0.40				50.0 ± 0.6
0.50	6.34 ± 0.06			34.7 ± 0.5

Stefan Lis et al., Journal of Alloys and Compounds **323-324** (2001) 125-127.

・地下実験の共通BGを、グループの垣根を超えて連携し、早期に測定・削減、技術を共通基盤化、成果を世界に発信する。

メーリングリスト

- メーリングリスト: lowbg_d01 アット googlegroups.com
 D01班レギュラーミーティングの案内等に利用。
- メンバー(19名): <u>http://bit.ly/30uRoWg</u>
 - メンバー随時募集中。気軽に南野(横国大)までご連絡を。
 minamino-akihiro-nxアット ynu.ac.jp
 - Wikiで情報共有

Backup

目標とする不純物量の上限

- KamLAND-Zen (A01)
 - U:, Th:
- CANDLES (A02)
 - U:, Th:
- XENONnT (B01)
 - U: , Th: , Kr: , ²²²Rn:
- NEWAGE (B02)
 - U: ~5 ppb, Th: ~0.2 ppb
- SK-Gd (C01)
 - 222 Rn: ~0.1 mBq/m³ (in water)

Gd₂(SO₄)₃含有水チェレンコフ検出器にお けるGd³⁺発光事象

- •Gd3+の発光波長~312 nmが、チェレンコフ光の測定波長領域 に入る点と、発光寿命が長ければ、遅延同時計測の際のバック グラウンド要因になる可能性がある点がポイント
- 発光波長は大体予想がついているので、色々な試料条件における発光寿命の測定がメイン。
- 発光なので、測定可能な波長域は励起光源(266 nm)より長波長で、分光器の測定範囲(分光器に依存、通常は十分に広い)に依存。
- バックグラウンドは、Gd3+イオンの他の発光波長からの干渉、PMT ノイズあたりですが、Gd3+濃度を上げて分光器の分解能がそれほど悪くなければ、あまり気にならないはず。

計画

