新型X線ピクセル検出器を使った太陽アクシオン探査

(Investigating Solar Axion by Iron-57, ISAI)

藤井 俊博(京大理/白眉)

fujii@cr.scphys.kyoto-u.ac.jp 鶴 剛, 池田 智法, 天野 雄輝, 山田 龍(京大理) 身内 賢太朗(神大理) 小貫 良行(東大理/素セ) 新学術「地下宇宙」2021年領域研究会 2021年5月19 - 21日 オンライン

- 量子色力学の「強いCP問題」を"洗い流す"解決策 (Peccei-Quinn機構)から予言される新粒子 R.D. Peccei and H.R. Quinn, Phys.Rev.Lett. 38, 1440 (1977) 理論では対称性が破れるはずだが、実験では保
 - 存されている
 - 暗黒物質として十分な量が初期宇宙に生成され Ş た可能性も
 - XENON1Tから太陽アクシオンと解釈可能な結果
 - *m*_a~46-56 eV が示唆されている Ş
 - 先行研究である、天体からのアクシオンの制 限 m_A < 10 meVとは矛盾している

Ş

アクシオン-原子核反応(gan)に特化した検出方法 XENON1Tはアクシオンの3種類(電子 g_{ae} 、光子 $g_{a\gamma}$ 、原子核 g_{aN})の相互作用が混在 ■ アクシオン - 原子核反応g_{aN}に特化した検出方法で、アクシオンの性質を調べる 太陽 Fe-57のM1遷移経由 +Fe-57 でアクシオンを放出 アクシオンと原子核 а 相互作用にのみ依存 実験室にあるFe-57 ⁵⁷Fe で吸収/脱励起により SOIPIX 14.4 keVを放出 実験室

新型X線ピクセル検出器 (XRPIX7)

ル検出器(XRPIX7)

- $24.6 \text{ mm} \times 15.3 \text{ mm} \times 300 \text{ micron} (608 \times 384 \text{ pixels})$ **各ピクセルに読み出し回路とトリガー機能を実装**
 - イベント駆動型読み出しが可能(< 10 µs 時間分 解能),1kHzのスルーレート
- 🦻 高分解能:14.4 keVで σ~250 eV (FWHM 590 eV)
 - 目標: σ~110 eV (FWHM 250 eV)

反同時計数法によりさらなる低バックグラウンド化

イメージング能力を持ち、イベントが残すトラック からもBG除去が可能

T.G. Tsuru et al., Proc. SPIE 10709, (2018)

(※)超伝導TESは高い分解能を持つが、ターゲットとなる⁵⁷Feによって性能が落ちてしまい、 ⁵⁷Feの質量を多くとれない(満田 Darkon 2019 より)

高分解、低BG、大面積を実現する上で最適

Investigating Solar Axion by Iron-57(ISAI)実験

- <sup>
 ↓</sup> リジッド・フレキシブル基板のXRPIX7 を4枚使用
 - <sup>
 §</sup> 57Feを2枚のXRPIX7で挟む
 - FREを2枚のXRPIX7で挟む
 - XRPIX7 (24.6 mm × 15.3 mm) と同じ 大きさの鉄箔を設置
 - [§] 57Feの質量 127 mg(厚さ40 micron)
 - 恒温槽内の鉛シールド内部に設置
 - 三角シンチレーターを格子状に設置し たアクティブシールド
- 🖗 一ヶ月の試験観測ののち、定常観測へ

リジッド・フレキシブル基板のXRPIX7

データ 収 集 用 PC

M1 山田 龍 D2 天野 雄輝

- Investigating Solar Axion by Iron-57, ISAI実験 Ş 高分解能、トラッキング能力、反同時係数法により低BG化が期待 Ş ↓ 1ヶ月で83 eV, 半年で53 eV のアクシオンの上限値へ到達できる Ş 将来計画: Extensional Investigating Solar Axion by Iron-57, EISAI実験 Ş ■ 同じ恒温槽内に57Feと新型X線ピクセル検出器を10組並べ、さらに高感度化

まとめと今後

■ アクシオン-原子核反応g_{aN}に特化した、テーブルトップ型実験で世界最高感度を目指す

57Feと衛星搭載用の新型X線ピクセル検出器を、飛跡検出型アクティブシールドで囲む

XENON1Tから示唆される $m_a = 50 \text{ eV}$ を仮定した場合、2年で3.1 σ の兆候が見える

ISAI実験での3.1σの兆候の結果から、EISAI実験での6.9σの発見を目指す

Backup

11

先行研究 (PDG 2020)

*m*_A < 145 eV, ⁵⁷Fe+Si(Li) 検出器(直径66 Ş mm,厚さ5mm) で45日間の測定

- A.V. Derbin, Phys.At.Nucl. 74, 596 (2011) Ş
- $m_{\rm A} < 216 \, {\rm eV}, 57 {\rm Fe} + {\rm PIN} 7 \, {\pi} \, {arsigma} \,$ Ş 2個で14日間の測定
 - T. Namba, Phys.Lett.B 645, 398 (2007) Ş
- m_A < 12.7 eV, ⁸³Kr(9.4 keV)による比例係 数管で613日測定(gaN反応ではない)
 - Y. M. Gavrilyuk et al., JETP Lett., 107, 10, 589 (2018)

Particle Data Group, PTEP, 083C01 (2020) http://pdglive.lbl.gov/DataBlock.action?node=S029IAN

Invisible <i>A</i> Limits are for the	axion mass in eV.	INSPIRE search			
VALUE (eV)	CL%	DOCUMENT IL	כ	TECN	COMMENT
••• We do not us	e the following dat	ta for averages, fits, limits, e	etc. • • •		
< 0.03		1 LEINSON	2019	ASTR	Neutron star cooling
$< 9.6 \times 10^{-3}$	95	2 LLOYD	2019	ASTR	γ -rays from NS
		3 SMORRA	2019		\overline{p} g-factor
		4 WU	2019	NMR	Axion dark matter
< 65	95	5 AKHMATOV	2018	CNTR	Solar axion
< 6.6	90	6 ARMENGAUD	2018	EDE3	Solar axion
< 0.085	90	7 BEZNOGOV	2018	ASTR	Neutron star cooling
< 12.7	95	8 GAVRILYUK	2018	CNTR	Solar axion
< 0.01		9 HAMAGUCHI	2018	ASTR	Neutron star cooling
		10 ABEL	2017		Neutron EDM
< 93	90	11 ABGRALL	2017	HPGE	Solar axion
< 4	90	12 FU	2017A	PNDX	Solar axion
		13 KLIMCHITSKA	YA 2017A		Casimir effect
< 177	90	14 LIU	2017A	CDEX	Solar axion
< 0.079	95	15 BERENJI	2016	ASTR	γ -rays from NS
< 100	95	16 GAVRILYUK	2015	CNTR	Solar axion
		17 KLIMCHITSKA	YA 2015		Casimir-less
		18 BEZERRA	2014		Casimir effect
		19 BEZERRA	2014A		Casimir effect
		20 BEZERRA	2014B		Casimir effect
		21 BEZERRA	2014C		Casimir effect
		22 BLUM	2014	COSM	⁴ He abundance
		23 LEINSON	2014	ASTR	Neutron star cooling
< 250	95	24 ALESSANDRIA	A 2013	CNTR	Solar axion
< 155	90	25 ARMENGAUD	2013	EDEL	Solar axion
$< 8.6 \times 10^{3}$	90	26 BELLI	2012	CNTR	Solar axion
$< 1.4 \times 10^{4}$	90	27 BELLINI	2012B	BORX	Solar axion
< 145	95	28 DERBIN	2011	CNTR	Solar axion
		29 BELLINI	2008	CNTR	Solar axion
		30 ADELBERGER	2007		Test of Newton's law

先行研究で測定されたスペクトル

A.V.Derbin, Phys.At.Nucl. 74, 596 (2011)

Fig. 1. Result of approximating the spectrum measured in anticoincidence with an active-shield signal in the range 10–20 keV. The inset shows the Si(Li)-detector spectrum measured in the range 10–80 keV.

T. Namba, Phy.Lett.B 645 (2007) 398

高分解能、低BGな装置による長期観測で *m*_A < 100 eV を狙う

実験装置の準備状況

2枚のXRPIX7で⁵⁷Fe箔を挟み、40 cm立方体の恒温槽内(-85°C)に設置

クリーンブース化

>50 mmの鉛で 環境放射線を遮蔽

エスペック MC-812

リジッド・フレキシブル基板による低BG化

Y. Onuki et al., NIM-A, 924, 448–451 (2019)

Table 1

Result of radioactivities in the chin-hoard

No	Category	Quantity	238 U(214 Bi)	²³² Th(²⁰⁸ Tl)	⁴⁰ K
		[/board]	[mBq/unit]	[mBq/unit]	[mBq/unit]
1	Chip-board	1(16.4 g)	52.5 ± 2.3	94.7 ± 3.7	71.7 ± 9.0
2	Connector	2	2.24 ± 0.15	2.13 ± 0.20	1.91 ± 0.56
3	Inst. amp.	1	-0.02 ± 0.24	-0.03 ± 0.38	-1.8 ± 1.2
4	Potentiometer	1	-0.07 ± 0.24	0.59 ± 0.40	1.4 ± 1.3
5	Ferrite beads	2	0.000 ± 0.010	0.042 ± 0.016	-0.01 ± 0.05
6	EMI filter	4	0.097 ± 0.012	-0.014 ± 0.016	-0.13 ± 0.05
7	0.047 µF MLCC	1	1.24 ± 0.03	0.031 ± 0.017	-0.05 ± 0.05
8	100 µF MLCC	6	0.63 ± 0.02	0.09 ± 0.02	-0.11 ± 0.05
9	0.1 μF MLCC	19	0.083 ± 0.012	0.028 ± 0.018	-0.04 ± 0.05
10	10 μF MLCC	4	0.082 ± 0.013	0.028 ± 0.019	-0.03 ± 0.05
11	$10 \mathrm{k} \Omega$ Resistor	1	0.004 ± 0.009	0.020 ± 0.015	-0.03 ± 0.05
12	$6k\Omega$ Resistor	1	0.016 ± 0.010	-0.017 ± 0.014	-0.06 ± 0.04
13	$10k\Omega$ Resistor	1	0.003 ± 0.009	0.008 ± 0.014	-0.01 ± 0.05
14	XRPIX5b	1g	-0.103 ± 0.090	-0.015 ± 0.153	-0.27 ± 0.45
15	Ag paste	1g	-0.049 ± 0.098	0.06 ± 0.16	-0.86 ± 0.48
16	Pb free solder	1g	-0.014 ± 0.037	-0.002 ± 0.058	-0.01 ± 0.20
17	Pb/Sn solder	1g	0.021 ± 0.066	-0.01 ± 0.10	0.13 ± 0.34
	Total [/board]	1	~ 64	~ 100	~ 76

Y. Onuki et al., NIM-A, 924, 448–451 (2019)

低BG化

- ▶ ⁵⁷Fe箔とXRPIXの可能な距離感:1mm
- ・更に間に Al箔: 0.2um, Si: 0.2um
- · 検出効率:14.9%

14.4keV Gamma

300um

