48Caを用いたニュートリノマヨラナ性の研究と 次世代高感度化技術開発

新学術領域「地下宇宙」領域研究会 2021年05月21日

大阪大学核物理研究センター 梅原さおり umehara@rcnp.osaka-u.ac.jp

CANDLES collaboration

研究分担者·協力者 小川泉、仁木秀明 宮永憲明、時田 茂樹

概要:二重ベータ崩壊次世代高感度化技術

- ⁴⁸Caの二重ベータ崩壊測定
 - CANDLES III(CaF₂)
 - 0vββ測定、2vββ測定
 - ■高純度結晶
 - ⁴⁸CaF₂蛍光熱量検出器
 - ■CaF₂蛍光熱量計
 - ■48Ca濃縮

「地下宇宙」研究会

二重ベータ崩壊測定

□ 131日の測定結果

高純度21結晶の結果

	結果
0νββ検出効率	0.36(21CaF ₂)
事象数(exp)	0
予想されるBG量	1.02
0νββ半減期	>5.6 × 10 ²² year
測定感度	2.8 × 10 ²² year

* 先行検出器ELEGANT VI

測定時間: 4947kg - day(2年強)

半減期 :>5.8×10²²年

・続く2年分のデータ解析中(新解析導入中)

PRD

•CaF₂結晶内部の放射性不純物がBG源 要高純度結晶開発

二重ベータ(2νββ)崩壊とベータ崩壊

- □ ニュートリノを放出する二重ベータ崩壊:他のグループによる測定
 - ■測定結果
 - $(4.2^{+3.3}_{-1.3}) \times 10^{19}$ years, 48 CaCO₃ $(3.5g {}^{48}$ Ca), ~1year, PLB495(2000)63
 - (4.3^{+2.4}_{-1.1}±1.4) × 10¹⁹年, ⁴⁸CaCO₃ 42g, 102+167 days、PRL77(1996)5186
 - $(6.4^{+0.7}_{-0.6}(stat)^{+1.2}_{-0.9}(syst)) \times 10^{19}$ 年, ⁴⁸CaF₂(⁴⁸Ca 6.99g),
 - PRD93(2016)112008:NEMO
- □ CANDLESで測定の場合:ベータ崩壊がバックグラウンド

ベータ崩壊測定 ポスター発表

> P09 山本朝陽:シミュレーション P18原田卓明:実験装置と改良

ベータ崩壊半減期から 0vββ核行列要素モデル検証へ

バックグラウンド事象: 低減方法

- □ 2vββ崩壊:エネルギー分解能
- □ 中性子捕獲反応からのγ線: 遮蔽システム
- □ CaF₂内不純物起源のバックグラウンド事象
 - 高純度結晶:14個の新結晶と入れ替え
 - 解析的バックグラウンド低減

新CaF₂結晶の性能

- 平均6.2±1.0µBq/kg
- 測定感度は1.7倍に。

次期検出器(熱量計)要求(20meV) 次期検出器(熱量計)要求(数meV)

□ 光量

- 光電子数が25%増加
- エネルギー分解能は7%改善
- 波長変換剤の入れ替え (透過率改善)による効果

最尤法による²⁰⁸TI除去結果

伊賀友輝 (2021年物理学会年次大会、 修士論文)

□ 除去方法: 先行²¹²Bi識別による低減

波形がα線ライク

時間相関:18分以内に

stable

事象位置:同じ結晶位置で

> E	
Counts/100keV	黒:no cut
uts/1	青:結晶位置 &
uno 10 ⁶	PSD
105	赤: ²¹² Bi-Po 除去
	208TI 除去(旧)
104	²⁰⁸ TI 除去(新)
103	The same of the sa
102	
10	
Ē.	
1	
0 1000 2000 3000 4000 5	000 6000 7000 8000 9000 10000 Energy[keV]

	残った事象数 (3.5~5.1 MeV)	Veto time /Live time(%)
旧解析	576 ± 24	25.5%
新解析	600 ± 25	8.8%

²⁰⁸TI-β+γ崩壊領域 Veto timeを65.5% 減

⇒ 実験感度が1.22 倍向上

残った事象について

- □ ²¹²Bi-α事象と異なる結晶に 再構成された ²⁰⁸TI-β+γ事象
 - ⇒ **周囲の結晶も考慮**した最尤法

梅原さおり、新学術「地下宇宙」領域研究会、2021年05月21

機械学習によるBG除去

Temuge Batpurev(博士論文) 阪井 俊樹(卒業論文)

□ 連続信号²¹²Bi→²¹²Po

■ フィッティング法:これまでの方法

時間差~100nsec 時間差分布 連続信号としてフィット Pulse Height(ADC ch) 識別可能 ングル事象としてフィットの効率を改善した 600 *250* 200 *150* = 200 100 E 100 150 200 250 3 Sampling time(2 nsec) 100 *300* 50 100

機械学習導入 時間差スペクトル (3.6-4.6MeV 0vββ~2vββ)

Half-life(data) = 295 ± 13 nsec

<u>(²¹²Bi半減期=296nsec)</u>

Ovββ、2vββのエネルギー領域いずれでも、 連続信号識別効率は改善している。 詳細チェック中。近々論文化を目指す。

梅

次世代検出器開発

- □ ⁴⁸CaF₂蛍光熱量検出器
 - 予想されるバックグラウンド
 - ■2vββ事象:エネルギー分解能0.5%、1トン48Caで~0.02事象/年
 - ■結晶内部放射性不純物によるα線事象:粒子弁別

蛍光熱量検出器:10mKで使用

CaF₂蛍光熱量計の光信号

韓国Kim Yong-Hamb氏ら AMoREサブグループ CANDLESサブグループ

□ CaF₂蛍光熱量計光信号

□ CaF₂のバンド構造

■ 蛍光・熱量観測できたが。。。

我々がよく知っている発光=280nm ~160nm(結晶で自己吸収)にも発光?

問題点

③ Light信号が広く分布(~10倍以上に広がる)

~160nm発光の吸収は位置依存性あり 光信号量が広く分布する原因になる

山本詩織(卒業研究)

TPB付ESR:ANKOK実験による提供

CaF₂のVUV発光

- □ CaF2結晶の発光測定
 - ■感度波長の異なる光電子増倍管を使用して光量測定

➤ 各PMTのPeak channel(with TPB)
Peak channel(w/o TPB)

PMT1	1.342 ± 0.004	最も感度波長 が <mark>広い</mark>
PMT2	1.411 ± 0.002	PMT1で増光 →VUVが存在
РМТ3	1.585 ± 0.008	 最も感度波長 が <mark>狭い</mark>

PeakをFitした際の統計誤差

量子効率の波長依存性 PMT1で 増光を確認 →vuvあり Quantum Efficiency(%) PMT1 PMT2 — PMT3 **TPB**の 領域(VUV) の波長 Wave Length(nm)

単純ではないがPMT1で増光→ VUV発光あり

波長ごとの光量を測定したい!

CaF₂発光~160nm、280nm 液体キセノン発光180nm

P15:谷山天晴(横浜国立大学大学院):

次世代の暗黒物質探索実験に向けた液体キセノンの近赤外発光の研究

蛍光熱量検出器

- □ CaF₂用センサー・信号読み出しの最適化
 - 集光システムの設計
 - ■光信号からの温度信号上昇を低減、場所依存性の低減
 - ■温度センサーの面積を小さく、厚みを大きく
 - ■温度センサーの複数化

次世代検出器:濃縮

福井大工:仁木、小川

□ 48Caの低い天然同位体比:濃縮法の一つレーザー濃縮を紹介

装置概略

Caの吸収波長スペクトル

偏向法原理

1本のレーザーが必要

-偏向用

繰り返しての光吸収・ 放出を利用 参考:イオン化法原理

2本のレーザーが必要

- •選択的励起用
- ・イオン化用

韓国等でも開発

次世代検出器:濃縮(偏向法)

□濃縮効果

装置概略

- □ より高濃度・高回収率へ→偏向角の増加が必要
 - 偏向用レーザーの照射システムの改良

原子ビームの開発

河島佑介(修士論文)

□ 大量の原子ビーム、効率よいレーザー照射

照射効率が良い原子ビーム形状の開発

x,y方向でのコ リメートが必要

このような形状

そのために、 チューブ状コリメータ評価

チューブ長とビーム径の関係 beam diameter(d) [mm] 80 70 : 150mm温度变化 60 50 40 他、温度など 30 20 10 50 100 150 250 300 tube length(a) [mm]

これらパラメータを大量濃縮装置設計に生かす

梅原さおり、新学術「地下宇宙」領域研

次世代検出器:濃縮(レーザー) 大阪大レーザー研:時田

- □ 注入同期による高出力化
 - マスターレーザーとスレイブレーザー
 - ■外部共振器型レーザー(EC-LD)の狭線幅レーザー光
 - ■要求:0.1pmオーダーの狭線幅発振
 - ■ファブリペロー型レーザー(FP-LD)の高出カレーザー光

出力Wレベルの青色レーザー構築

- マスターレーザーの安定化
- スレイブレーザーの注入同期

→高出力化

次世代検出器:濃縮(レーザー)

- □ 注入同期
 - ■スレーブレーザーの波長
 - ■マスターレーザーを用いて合わせる

スレーブレーザーの注入同期:OK

同期の結果

― スレーブレーザー

- スレーブレーザー(同期)

レーザー波長の安定化

□波長安定化の自動化

エラー信号による安定化:OK 内部PDを用いたエラー信号も確認済み

カルシウム同調テスト

2021年05月

□ 福井大学開発濃縮装置+レーザー研開発青色レーザー

ノーザー同調の様子(動画)

Ca原子吸収スペクトル

レーザー同調を確認 要位相変調

梅原さおり、新学術「地下宇宙」領域研究会、2021年05月21日

まとめ

数meV感度の測定装置開発の基礎技術

- □ 神岡での二重ベータ崩壊測定
 - 長期測定データ解析: 0vββ半減期
 - ■130日データ: PRD、2年データ: 詳細解析中
 - 2vββ半減期:解析に加えべータ崩壊測定
 - 結晶入れ替え:14個結晶第一要求達成
- □ 蛍光熱量検出器
 - VUV発光の可能性大:発光スペクトル測定希望
- □濃縮
 - ■マスター+スレーブレーザーによる100mW同調光
 - 大型装置開発のためのパラメータ調査(チューブコリメータ 性能など)
 - カルシウム同調テスト