Ambient neutron measurement with a He-3 proportional counter for CANDLES experiment

Mizukoshi Keita (Osaka University) for CANDLES

Motivation

- Ambient neutron is a serious background for underground experiments searching rare events.
 - For neutrinoless double beta decay search, (n, γ) reaction can make high energy γ-ray around Q-value; it will be a serious background.
- To estimate and shield this background,
 it is important to
 evaluate the neutron flux.

CANDLES all crystal (including low purity) Live time 131 days

Exp. Data

2

Detector and its principle

- We used a ³He proportional counter.
 - $^{3}\mathrm{He}+\mathrm{n}\rightarrow ^{3}\mathrm{H}+\mathrm{p}+0.76~\mathrm{MeV}$
 - The energy of the exothermal reaction in the neutron capture can be obtained.
 - This detector is sensitive to thermal neutrons (~0.025 eV), and <u>cannot</u> measure an initial neutron energy.

³He proportional counter

Setups for high energy neutron

- To measure high energy neutron, we used a moderator (polyethylene).
- Boron sheet captured thermal neutrons and reduce its effect.

Results

 $^{3}\mathrm{He}+\mathrm{n}\rightarrow ^{3}\mathrm{H}+\mathrm{p}+0.76~\mathrm{MeV}$

- Full energy peak is 0.76 MeV.
 If ³H or p escapes, continuum region will be made in a low energy (Wall effect).
- Low energy region below 0.3 MeV is dominated by electric noise for ambient neutron measurement.
- We counted events up to 0.85 MeV and down to 0.5 MeV, then the number of total events was estimated by a clear spectrum observed using ²⁵²Cf.

Count rate in each setup					
Setup	Α	В			
Count rate (×10-3cps)	1.295 ± 0.034	0.446 ± 0.018			
Live time (day)	14.03	19.27			

Measured spectrum in setup B

Spectrum of Source (252Cf)

 The count rate of Setup A (R_A) and B (R_B) involves a detection of thermal and fast neutron, respectively.

Simulation

- To convert from the count rates

 (R_A, R_B) to ambient neutron flux, the shape of the spectrum was required.

 The shape cannot measured by ³He detector thus estimated by simulation.
- We considered the source of the neutrons made from (α,n) reaction of U/Th series decay.
 - Neutron induced by cosmic muon is negligible.
- We picked three types of rocks as samples, they had much different abundance of chemical compositions.
 - <u>The difference affects much the</u> <u>yield of neutrons.</u>

Main components in each samples

(wt. %)	sample1	sample2	sample3
0	40.5	37.9	35.6
Ca	28.0	24.3	29.7
Si	16.6	15.6	12.0
Fe	7.6	16.6	13.5
AI	5.2	0.3	0.1
Mn	0.8	3.5	2.9

Generated neutron in vary rocks JR-1 and JA-3 are geometrical reference database

Data-driven Analysis

Thermalization parameter obtained by measurement

- We <u>cannot investigate</u> the all wall rock components in details.
 - Especially amount of water contents in the rock and chemical composition including Hydrogen will much affect thermalization of fast neutrons.
 - Thus, thermalization in the rock was <u>unknown</u>.
- We regarded the percentage of hydrogen (%of h. e.) in simulation as a thermalization parameter.
 - %of h.e. was derived by the experimental result (the ratio between setups A and B) in each rock component.
- The most likely spectra (made from experimental data) in each sample <u>are</u> <u>almost same</u>.

7

Obtained spectrum

- · We obtained the most likely spectrum of the ambient neutron.
- We compared the fluxes (the previous study fluxes in other underground laboratories).
 - They are the same order of magnitude.
 - It is difficult to compare the result simply because there are many difference in these measurement (e.g., detector, assumption of spectrum shape, and definition of flux)

%They used the different definition of flux. – We adjusted the same definition of us.

The most likely spectrum

Flux (×10 ⁻⁶ cm ⁻² s ⁻¹⁾	Thermal	Non-thermal
Kamioka This result, Mizukoshi)	7.9 ± 0.23 +0.7 -0.7	15.6 ± 0.5 +1.2 -1.4
Kamioka (Minamino 2004)	8.26 ± 0.58	11.5 ± 1.2
Gran Sasso (A. Lindi 1988)※	13.3 ± 1.5	10.2 ± 1.1
LSM (K. Eitel 2012)※	14.3 ± 1.3	4.2 ± 2.8
K Mizi	koshi '18 Nov.	8 Kvoto 8

Neutron fluxes in previous researches

Discussions

- In the previous research, rough spectral shape was assumed (e.g., Boltzmann distribution and 1/E).
 The most likely spectrum suggests the excess in a few MeV.
 - The excess is interesting for direct dark matter search.
 - The excess should be confirmed by a liquid scintillator which has a sensitivity for the neutron.

- Since the cross section of high energy neutrons is small, it continues to be a high energy neutron.
- Once it lose energy, the cross section increases. it continues to lose energy.
- Therefore, the excess will remain at several MeV.
- K. Mizukoshi '18 Nov. 8 Kyoto

Summary

- We evaluated an ambient neutron spectrum and obtained the flux at the Kamioka Observatory.
 - · using ³He proportional counter and moderator effectively
 - \cdot with data-driven analysis and simulation
 - · considering systematic errors
- Spectral excess around a few MeV was suggested.
 It should be confirmed by a sensitive detector for non-thermal neutron.
 - · We are preparing a low BG liquid scintillator.
- We published the manuscript to the preprint server (arXiv: 1803.09757)

Thank you for your attention.

Backup slides

He-3 Cross section for neutron

- He cross section is much large for thermal neutrons.
- Cross sections of the rock components have the same trend.
 - Since the cross section of high energy neutrons is small, it continues to be a high energy neutron.
 - Once it lose energy, the cross section increases. it continues to lose energy.
 - Therefore, the dip will remain at several MeV.

Neutron source (Not U/Th)

- We can consider the ambient neutron made from cosmic muon.
 - It can make high energy neutron (>10 MeV), the number of neutrons by muon is 100 times less than the ones by U/Th series.
- In this research, we
 ignored the contribution of
 muon.

Generated neutrons from cosmic muon

Spectrum of each source for sample1

All components of the rocks

(wt. %)	sample1	sample2	sam	ple3	sampleA	sampleC	KamRock
Si	-	16.6	15.6	12.0	29.1	27.8	18.5
Ti		0.2	0.0	0.0	0.5	0.5	0.1
AI		5.2	0.3	0.1	7.1	8.3	10.6
Fe		7.6	16.6	13.5	4.6	4.5	1
Mn		0.8	3.5	2.9	0.1	0.1	0
Mg		0.6	1.1	0.7	2.2	1.3	0.3
Ca		28.0	24.3	29.7	4.5	5.2	1.8
Na		0.0	0.2	0.0	2.4	2.6	3.9
К		0.0	0.1	0.0	1.2	1.5	2.1
Р		0.2	0.0	0.0	0.1	0.1	0.1
S		0.0	0.1	1.2	0.0	0.0	0
Zn		0.0	0.1	4.3	0.0	0.0	0
Sr		0.1	0.0	0.0	0.0	0.0	0
Nb		0.0	0.0	0.0	0.0	0.0	0
Sn		0.1	0.0	0.0	0.0	0.0	0
Pb		0.0	0.0	0.0	0.0	0.0	0
0	2	40.5	37.9	35.6	48.3	48.1	60.7

Definition of Flux

- $\cdot\,$ Two types of definition are used.
- (1)Number of particle through the sphere (radius r)/
 the area of grate circle(πr²)
 - · Widely used in Nuclear physics
 - · We use that.
- · (2)Number of particle through the circle (radius r)/ the area (π r²)
 - · Widely used in Particle physics
 - LSM and Gran Sasso would use this definition.

U/Th系列以外の寄与(Muon)

- ・ U/Th系列核の寄与以外に
 宇宙線Muonの寄与が考え
 られる.
- 確かに,U/Th核より高エネ
 ルギー(>10MeV)の中性子
 を生成可能.
- ただし,U, Th系列の1/100
 の中性子しか生成できないので,本研究では無視した.

得られたスペクトル形の生成要因内訳