KamLAND-Zen800 実験ミニバルーン送液管 の準備と導入

三宅 春彦, 他 KamLAND-Zen Collaboration 東北大学 RCNS

新学術A班 若手研究会2018 (11/8,9 @京都大学)

KamLAND-Zen 実験

液体シンチレータ反ニュートリノ検出器KamLANDを用いた ニュートリノを伴わない二重ベータ崩壊(0*νββ*)の探索実験

- ・ニュートリノのマヨラナ性の証明(宇宙物質優勢の鍵?)
- ・ニュートリノの質量階層構造へ制限

ー早く世界最高感度を達成、¹³⁶Xe での0
v $\beta\beta$ の半減期を最も厳しく制限
 $T_{1/2}^{0\nu} > 1.07 \times 10^{26} \text{ yr } (90\% \text{ C.L.})$

SUS flange(1)

erl2

Pee

ミニバルーン内へのXe-LSの輸送(供給・回収)経路
 ミニバルーンをKamLANDの中心に保持しておく支柱としての役割

送液管に対する要求

KamLAND上部の狭い空間での作業→柔軟性が必要 Oν観測のBGとなるU, Thが不純物として含まれない →「コルゲート管」と呼ばれるナイロン製の管を採用 (土木や電気工事などでよく使われるもの)

洗浄の必要性(表面不純物の除去)
Zen400での^{110m}Ag由来BGは外部からの混入が疑われている
2mに切断して内部も洗浄
PEEK材製のシリンダーで連結して使用

HPGe検出器による測定

⁴⁰Kイベントが支配的 U.L. 1325 mBq/sample L.L. 1139 mBq/sample (90% C.L.)

この値は<mark>純水と洗剤</mark>による洗浄で変化しな かったため、原因は付着物ではないと考え られた(顔料由来か?)

実は洗浄方法はインストール直前になって 変更された(**エタノール**を使った洗浄が必 要になった)

- 洗浄済みのコルゲート管の溝をエタノールで拭いたところ汚れが付着
- この汚れが0νの観測にどれだけ効くかはわからない(調べる時間的 余裕もなかった)ものの、発見した以上再洗浄が必要

エタノールを含ませた布で汚れがつかなくなるまでゴシゴシ拭く (汚れを発見したときの方法をそのまま踏襲) →**辛過ぎた(手の皮が剥ける、翌日は筋肉痛)**

クロスで拭く前にエタノール掛け流し+歯ブラシで洗うことに →その後布で拭いて最終確認(作業の省力化に成功)

- 内側は布で拭くことができないため、片 側を塞いでエタノールを溜めた状態でブ ラシで洗浄
- 廃液を回収するとコロイド状の濁りが見 られた

エタノールを流し込んで ブラッシング(30分)

片側をビニール袋で塞ぐ

超純水+超音波洗浄器で仕上げの洗浄

洗浄に使ったエタノールを完全に落としきるために超音波洗浄機を使用

LS への水の混入は厳禁
 ステンレスラックに立てかけて乾燥
 クリーンルーム内はダウンフローがある
 ため比較的短時間で内側も乾燥
 セイデンクリスタルで側面を覆うことで
 埃の再付着を防止

KamLAND上部のクリーンルーム 〜

- ・組み立て作業時にも埃が付着しないよう養
 生をしながら作業
 - 工具類も仙台で洗浄したものを神岡へ搬送 して使用

エタノール洗浄の効果

過去のPhaseとの比較

Energy selection 1.1MeV < E_{vis} < 1.6 MeV

run15019(June 1st, 2018)

5.5

5

4.5

0

0.2

0.4

0.6

0.8

run13921(Failed 800)

10

1.6

1.4

1.2

1.8

 $x^{2}+y^{2}[m^{2}]$

2

40Kのレートが1/3程度に減少!

•

- KamLAND-Zen 800のための送液管は仙台のクリーンルームにて徹底的 な洗浄を実施.
- ・組み立て時の不純物の付着にも細心の注意を払って作業
- ・粗い評価ながらエタノールによる再洗浄は効果的だったと思われる
 - ・⁴⁰Kのレートが1/3程度に減少
 - ・HPGeで検出された⁴⁰Kは洗剤で落としきれていなかった表面の汚れが 原因であった可能性を示唆
 - ・ただしエタノール洗浄をしたサンプルはHPGeで測定していない
 - Oν観測に影響のあるU, ThのBGレート評価
 - ・特にバルーンと送液管を繋ぐPEEKシリンダー周囲(Oヵ解析の有効体積 に近い部分)の解析を急ぐ

Backup

Slide by Sasha Corrugated tube (1.8d exposure)

Provider: RCNS, Tohoku University **Experiment:** KamLAND-Zen Material: Corrugated tube PMA CYLG-95B for KamLAND-Zen 800 (sample #1) **Chemical formula:** C₆H₁₁NO **Dimensions:** Corrugated tube, inner diameter 91.9 mm, outer diameter 106.0 mm, length ~100 mm **Mass:** 64.8 g **Density:** 1.1 g/cm^3 **Date of assembling:** 25/10/2017 Data live time: 159574 s

The corrugated tube to be used for the KamLAND-Zen 800 mini-balloon.

Slide by Sasha

RI in corrugated tube (1.8d exposure)

lsotope	Energy,	Signal,	Background,	UL, 90%CL	LL, 90%CL
	keV	events	events	(mBq)	(mBq)
⁴⁰ K	1460.8	502	18	1325	1139

Comment: we stopped data taking since ⁴⁰K was main source of RI. This activity corresponds to a 10cm of corrugated tube.

Slide by Sasha Corrugated tube flange (3.5d exposure)

Provider: RCNS, Tohoku University **Experiment:** KamLAND-Zen **Material:** Two grip pieces PMA GRIP 95 for KamLAND-Zen 800 **Chemical formula:** C₆H₁₁NO **Dimensions:** Ring, inner diameter 97.0 mm, outer diameter 129.0 mm, thickness 27.0 mm **Mass:** 67.35 g **Density:** ~1.5 g/cm³ **Date of assembling:** 27/10/2017 Data live time: 305267.05 s

Slide by Sasha

RI in corrugated tube flange (3.5d exposure)

lsotope	Energy, keV	Signal, events	Background, events	UL, 90%CL (mBq per sample)	LL, 90%CL (mBq per sample)
⁴⁰ K	1460.8	1425	35	2277	2082
^{234m} Pa	1001	12	11	109	0
²²⁸ Ac	911.2	738	11	367	325
²¹⁴ Bi	609.3	1949	8	421	390
²⁰⁸ TI	583.2	1049	12	119	107
²¹² Pb	238.6	3031	39	367	345

Slide by Sasha

PEEK (5.8d exposure)

Provider: RCNS, Tohoku University
Experiment: KamLAND-Zen
Material: PEEK material for KamLAND-Zen
800

Chemical formula: C₂₁H₁₈O₃ **Dimensions:** Irregular shape in opened Ssize container **Mass:** 36.6 g **Density:** 1.32 g/cm³ **Date of assembling:** 31/10/2017 **Data live time:** 503457.46 s

Slide by Sasha RI in PEEK (5.8d exposure)

lsotope	Energy, keV	Signal, events	Background, events	UL, 90%CL (mBq per sample)	LL, 90%CL (mBq per sample)
⁴⁰ K	1460.8	61	58	11	0
^{234m} Pa	1001	11	18	12	0
²²⁸ Ac	911.2	19	18	1.6	0
¹³⁷ Cs	661.7	7	7	0.3	0
²¹⁴ Bi	609.3	18	13	1.1	0
²⁰⁸ TI	583.2	24	19	0.65	0
²¹² Pb	238.6	78	64	1.3	0.14
²³⁵ U	185.7	153	131	1.2	0.16
²³⁴ Th	63.3	38	62	1.1	0

Energy Spectrum around corr.tube

Energy Spectrum (corr.tube/Failed800/run013921)

Event selection criteria ⁴⁰K: green area events ²⁰⁸TI : 2.2MeV < Evis < 5.0 MeV

Energy Spectrum (corr.tube/Zen400/run013069)