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5.1. TRILX—nE ZHHEALRF
Collision cascades

m~100-1000 GeV
v=230km/s

Recoil ion
<100 keV

Nuclear quenching factor
(Lindhard factor)

One = N/e
BEFMEIZFEHhNSAITRILF—DEE

® : Electronic excitation

® : Recoil ion
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Lindhard factor n/¢

The stopping powers contain only a part
of the necessary information to obtain the
quenching factor, /¢ ratio. The
differential cross section in nuclear
collisions is needed for the integral
equations. For Z= 2,

(Z:_;l V()= 1 2?/2 () {V(E - gj -v(e)+ v[éj}
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Z, =2,

Table 1. Coefficients for the quantity # = C,e”! + C,&? for k values of 0.1-0.2 in
the range ~0.01< ¢ < 10, obtained by fitting the numerical results from Lindhard.

k C, P, C, P,

0.10 0.1753 1.0712  0.1358 1.4902

0.15 0.2958 1.1130  0.1304 1.4212

0.20 0.2297 1.0466  0.2768 1.3048

k ion/atom C, P, C, P, E; Ey

0.127  C/C 0.2428 1.1013  0.1325 1.4521 0.06 55
0.139  Ne/Ne 0.2657 1.1061 0.1371 1.4273 0.2 185
0.145  Ar/Ar 0.2778 1.1085 0.1380 1.4165 0.7 -—-
0.158  Kr/Kr 0.2303 1.3234 0.2134 1.0738 4 -—-
0.165 Xe/Xe 0.2361 1.3182 0.2206 1.0730 10 -




5.2. electronic Linear Energy Transfer (LET,))

Scintillation as well as its quenching are
electronic processes. We introduce the
electronic LET.

LET, = -dn/dR = -An/AR
=-(N;Mp)/(R}-Ry)
for quenching calc. etc.
The true range R is given by the total
stopping power

Ry =J(dE/dY) ! dE

R: the range

The Bragg-like curve for TPC
The projected range, R, may be used
b) (depth)

— T
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<LET,> = n/R
dE_ dE
LET, =——n -5 dE_dn o
dx  dE dx de

LET = dE
T dx
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Fig. 4 The recoil ion to y ratio in CsI(T) as a function of
recoil ion energy. The broken lines are present
estimates. The solid line is fitting to the Birks—
Lindhard model by Pecourt.
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FIG. 5. The mean hit density measured for 5.3 MeV «a particles,
290 MeV /n Be, B, and C ions, and 200, 400, and 600 keV Kr
ions in fine-grain nuclear emulsion as a function of LET (Fig. 4 in
Ref. [17]). The electronic stopping power at incident energy was
used for Kr ions (green triangle) [17]. Circles for Kr are replotted
at averaged LET,, (blue circle; present work, see the text). Open
and closed symbols show the difference in the process with the
standard developer and the fine-grain developer, respectively.
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Nuclear quenching factor

0.0

Lindhard factor in compounds

No expressions for q,,. in compounds are available. We use a simple
approximation.

: The model should be tested in ionization
An independent element approach

measurements in gas.
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p
7
/
02 | /
/
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q,..(C/CS,) = q,.(C/C) The simple approach is possible since
S./Sy ratios for collisions with homo- and
0nc(S/CSy) = qno(S/S) hetero-atoms are close to each other
| cs, 10

c k=0.127

C/Alp.l.

C/S asym.
08 f
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Nuclear quenching factor

S/Casym. ettt Pb/S
02 |
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,@; expt. & part simulation by Snowden-Ifft

NIMA 498, 155 (2003)

Solid curves; the independent element approach



08

Qne

06 [

Nuclear quenching factor
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Nal, Csl, CaF, and BaF, as a function of recoil ion energy.
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Inorganic Scintillators
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Quenching factor for Inorganic Scintillatiors

RN/Q = g1/Lg = (Qne Ger)/ Ly

CInc = I-ETeI :>qu

Scintillation efficiency L, in Nal depends
on LET and the velocity. We take values

for slow ions
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Fig. The nuclear quenching factor, q,., and RN/g ratios
for Ca and F ions in CaF,(Eu) as a function of recoil
ion energy.

Solid curves are g, (p.w.).

Broken curves are RN/g ratio (p.w.).

Small dots represents q,. using TRIM code (BPRS).
The dot-dashed curves are RN/y ratio, fitting and
extrapolated to the low energy region assuming that
the g-value depends inversely on S; (Osaka).
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5.2. BFHILET & Bragg-likepi#z
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R = E_dE

0 Na . ST
R, : projected range
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1
R.1 : range projected on the plane
1 to the initial direction
R. : chord range
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Theranges, R& R,;  GasTPC
MS. VL, C. p.10-11

The rule of thumb Lindhard, 33, no.14
1M, M, k . electronic stopping constant
R/Rprj:1+gﬁ = R/Rprj:]'—l_l//ﬁ (dg/dp)zkgl/z

1 1
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Fig. 9. Approximate curves for 9,/Gp, for large values of the ralio g = M,/M, and a few values Fig. 8. Correction for projected ranges (g, ~0p,)/@p = uy, to first order in the mass ratio
of k. o= M,/M,. Curves are shown for pure nuclear stopping and for three values of electronic

stopping parameter k.
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dn/ dRpg, (MeV cm?/ mg)
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dn/dRPRJ (MeV cm?/mg)

Bragg-like curve dn/dRpg,

charge distribution in recoil direction
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5.3. Angular scattering
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Multiple Scattering

a. 55
Bohr-Williams, SRIM Table ? Ep DTMEBEINLLY,

b. I
b1 JEX x HYELY  Meyer, Sigmund & Winterbon  Ey A EEINLLY,

b2 ExEEE Valdés & Arista En DN BEINGL,
c. Monte Carlo simulation
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Electronic linear energy transfer
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Angular Scatterng 9,,

Theories

Meyer based on Thomas-Fermi interaction

72 2
a 9 : Reduced angle

— 8 4 — a2
G2 = g,(7) "‘ 78,(7) 7= 2 n=rma Nx t : Reduced thickness
0 0

S = g, =-1.936x1077* +1.005x107°7° —2.004x 107> +0.3177¢

Sigmund & Winterbon
Thomas-Fermi interaction
Lenz-Jensen interaction

Sidenius & Andersen
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Angular scattering and lateral straggling

The lateral displacement and the
scattered angle 6 are interrelated

/
=T —
X
Sidenius and Andersen gave an

empirical formula

iy, =0.22¢*°

~

9

1/2

i
=121 =022:"T
T

the reduced and absolute terms
¢ = (y+z2)'2 : the lateral straggling

9 _9 2 A
8A +A
u=ma’N Ea,

27.7,

O(R)=T,(7)

6 : the scattering angle
¢ = (y+z)"2 : the lateral straggling
x : the thickness

SRIM gives the lateral straggling

K(R)

1072 10" 1 10 102 v 103
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BELA & Enff
0. ZBFY  REFD LAY T,

Range & Projected range, LET, Z,=2, & 2 PR R 0 AT T LA
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(b) X/Rprj

Fig. 3. Half width (HWHM) of the angular distribution 8,, for (a) 135 keV Ar recoil in Ar, and (b)
100 keV Xe recoils in Xe as a function of the thickness x in the unit of the projected range R ;. The
solid curve indicates the middle value of Thomas-Fermi and Lentz-Jensen, (TF+LJ)/2 potentials,
dot-dash curve shows the empirical form [27], closed circles with dashed curve show the inclusion
of the energy-loss effect [24]. The dotted curve is the Bohr-Williams approximation and the open
diamond show the estimate using the range and the lateral straggling obtained from SRIM [16]. The
results shown in Fig. (b) basically apply also for CslI crystal.



Scaling & References

1 ) . .
R A+ A a, : screening radius
e=a /b=a, -[2610 ?wzlzz 12} b : impact parameter

A, a, = 0.529x108 cm
RN 4 A A, R, =¢€%*(2a,) = 13.6 eV
=RN -47a
P T (A +A) ro = N13/2
72 n, : no. of collisions

T = r—sznc — ﬁgSsz 0= (y2_|_X2)1/2

gopgf it T S a. =0.8853a, - (Z>° + Z2/3) 2

2 A T 22,7,
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Monte Carlo Simulations

A Corturier et al. JCAP 2017
SRIM simulation
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Monte Carlo Simulations
MIMAC gas Drift Direction

- 6.32 keV
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Tao, MIMAC, NIM A 985, 164569 (2021)
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6,, for 6.5 keV and 35 keV F recoils
in MIMAC gas as a function of the
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Nuclear Emulsion
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Fig.2 Angular deviation due to the straggling of nuclei in a

target. A 100 nm threshold on the range of the recoil track 1

SRIM Command: “Ion Ranges (3D)”
TRIM track generator MC program
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6., for 35 keV C recoils and 200 keV Kr

recoils in nuclear emulsion as a function
of the thickness x.
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