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内容 (仮)

1. 序論
1.1.阻止能と断面積
1.2.重粒子の阻止能 古典論 

1.3.光吸収断面積と振動子強度
2. 原子模型
2.1. 電子ガス
2.2. Thomas-Fermi 模型
3. 重粒子の阻止能
3.1. 荷電粒子と原子の衝突 摂動論
3.2. 高速重粒子の阻止能 Betheの式
3.3. 高速重粒子の阻止能 Betheの式の拡張 

3.4. 重粒子の飛跡構造 I

4. 低速重粒子の阻止能
4.1. Rutherford 散乱 

4.2. 核的阻止能
4.3 電子的阻止能 電子移動 （Firsov理論）
4.4 電子的阻止能 誘電応答 （Lindhard理論）
4.5  MO理論

5. 低速重粒子によるエネルギー付与
5.1.エネルギー分配 核的消光因子
5.2. 電子的LETとBragg-like曲線
5.3  Angular Scattering

5.4. アルファ崩壊の際の反跳重粒子
5.5. 電子的消光因子
6. W値と energy balance

6.1気体と凝縮相
6.2 高速粒子と低速粒子
6.3 Penning電離 一重項と三重項



5.低速重粒子によるエネルギー付与



m～100-1000 GeV

v=230km/s

Recoil ion

<100 keV

Collision cascades

: Electronic excitation

: Recoil ion

WIMP

Nuclear quenching factor

(Lindhard factor)

qnc = /

電子励起に使われるエネルギーの割合

5. 1. エネルギー分配 核的消光因子



 原子散乱,  熱 ･フォノン   T ボロメータ，泡箱 

エネルギー E 極低温Ge

電離       Q SSD, 気体TPC 

 電子励起,  液体Xe

発光       S NaI(Tl), スチルベン

       極低温CaWO4

電子励起のエネルギー 
核的消光因子 qnc = ──────────── = ── 電離・発光を利用する検出器

 入射粒子のエネルギー E

低速重粒子によるエネルギー分配と検出器
 電離・発光・熱に費やされるエネルギーの割合が
 粒子とエネルギーによって異なる

⇒ 主なBGであるガンマ線と反跳核との弁別

衝突カスケードが終了した後、電子励起に費やされる エネルギーの割合
RN/ 比    気体・半導体
Bragg-like曲線 (-d/dRprj)  気体TPC中の電荷分布 head-tail検出
シンチレータのRN/ 比の考察  qT = qnc·qel

消光なし q = 1,   全消光 q = 0

Lindhard factor



Lindhard factor   /

The stopping powers contain only a part 
of the necessary information to obtain the 
quenching factor, / ratio. The 
differential cross section in nuclear 
collisions is needed for the integral 
equations.   For Z1= Z2,
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Lindhard, 33 (10)

電子的消光因子
評価には電子励起密度の情報が必要
電子的LET (線エネルギー付与)

LETel = −
d𝐸𝜂

d𝑥
 

Experimental results for Ar; Phipps et al [1964] 



Table I. Coefficients for the quantity η = C1ε
P1 + C2ε

P2 for k values of 0.1–0.2 in 

the range 0.01< ε < 10, obtained by fitting the numerical results from Lindhard. 

==========================================================

k C1 P1 C2 P2

-------------------------------------------------------------------------------------------------

0.10 0.1753 1.0712 0.1358 1.4902

0.15 0.2958 1.1130 0.1304 1.4212

0.20 0.2297 1.0466 0.2768 1.3048

---------------------------------------------------------------------------------------------------

k ion/atom C1 P1 C2 P2 EL EH

keV keV

--------------------------------------------------------------------------------------------------

0.127 C/C 0.2428 1.1013 0.1325 1.4521 0.06 55

0.139 Ne/Ne 0.2657 1.1061  0.1371 1.4273 0.2 185

0.145 Ar/Ar 0.2778 1.1085 0.1380 1.4165 0.7 ---

0.158 Kr/Kr 0.2303 1.3234 0.2134 1.0738 4 ---

0.165 Xe/Xe 0.2361 1.3182 0.2206 1.0730 10 ---

=========================================================

Z1 = Z2



5.2. electronic Linear Energy Transfer (LETel)

Scintillation as well as its quenching are 

electronic processes. We introduce the 

electronic LET.
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LETel ≡ -d/dR = -/R R: the range

= -(1-0)/(R1-R0)

for quenching calc. etc.

The true range R is given by the total 

stopping power

RT = ∫(dE/dx) total 
-1 dE

The Bragg-like curve for TPC

The projected range, RPRJ, may be used

(depth)
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阻止能と電子的LET
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⇐ 重粒子の飛程 R を求めるのは少し面倒

⇐ 解析的に表わせられる。
 R は要らない



qnc

TRIM  との比較



Fig. 4   The recoil ion to  ratio in CsI(T) as a function of 
recoil ion energy. The broken lines are present 
estimates. The solid line is fitting to the Birks-
Lindhard model by Pecourt. 

The same qnc as LXe.
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放射線物理・放射線化学の
情報を使って消光因子を評価できる。
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⇓
低速重粒子の LETel 依存性

LETel を使うと

核乾板



No expressions for qnc in compounds are available. We use a simple 

approximation.

An independent element approach

qnc(C/CS2) ≈ qnc(C/C)

qnc(S/CS2) ≈ qnc(S/S)

Lindhard factor in compounds
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Solid curves; the independent element approach

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

N
uc

le
ar

 q
ue

nc
h
in

g 
fa

ct
o
r

Energy  (keV)

CF4
C

F

Pb

k = 0.132

k = 0.127
CF4



0.0

0.2

0.4

0.6

0.8

0 50 100 150 200

N
u
c
le

ar
 q

u
e
n
c
h
in

g 
fa

c
to

r

Energy (keV)

NaI, CsI, CaF2, BaF2 F

Na

Ca

I, Cs, Ba k = 0.165

k = 0.155

k = 0.138

k = 0.132

0.0

0.2

0.4

0.6

0.8

1.0

1.2

100 1,000 10,000

dL
/
dE

(a
rb

. 
u
n
it
)

-dE/dx (MeV∙cm2/g)

CaF2 (Eu)

He

protons

F recoil

Ca recoil

Pb in a-decay

200 keV

10 keV

100 keV

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 10 100 1,000 10,000

dL
/
dE

(a
rb

. 
u
n
it
s)

dE/dx (MeVcm2/g)

NaI

electron

proton

He

Inorganic Scintillators

0

500

1000

1500

2000

2500

0 50 100 150 200

E
le

c
rt

o
n
ic

 L
E
T
  

(M
e
V

·c
m

2
/
g)

Energy  (keV)

Na/NaI LETel 

I/NaI LETel

Cs, I /CsI LETel

F/CaF2

Ca/CaF2

F/BaF2

Ba/BaF2

scale

Na/NaI

I/NaI

Cs & I /CsI

F/CaF2

Ca/CaF2

Fig.  Scintillation efficiency for protons and He ions 

(Zhang,2008) as a function of differential LET in CaF2(Eu). 

Horizontal bars show electronic LET (=-dh/dx) for recoil ions. 

Fig.   Nuclear quenching factor qnc for recoil ions in 
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6月

12月

230 km/s

5.2. 方向感応型検出器

は
く
ち
ょ
う
座

一般の検出器は季節変動
しか検出できない
季節変動は極めて小さい。

方向感度をもった検出器は
日変動が観測できる。

反跳核の飛程は極めて短い
散乱により前後の判定が難しい

気体TPC (Time Projection Chamber) 
CS2 のような電気陰性のガスを使う。（拡散が小さい）

DRIFT

飛跡検出器 fine grain emulsions 



The ranges, R & Rprj
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Rprj : projected range

LETel = -dEη/dx 

飛跡に沿った電子的 Energy

Lindhard, 33, no.14

LETel
prj = -dEη/dRprj

電子的 Energy の空間分布
励起状態分布

方向感度をもつ検出器

R┴ : range projected on the plane 

⊥ to the initial direction

Rc : chord range

← 個々の反跳核
 測定に関係するのはこちら

LETel
c = -dEη/dRc

電荷量 ⇒ Energy

始点と終点の距離 ⇒ RC

5. 2. 電子的LET と Bragg-like曲線



ψ = 0.0089x3 - 0.0437x2 - 0.1127x + 0.6193

x = log(ε/2)+2

k = 0.15
Ψ ≈ 0.42

The ranges, R & Rprj

MS. VI, C.  p.10-11

2
prj

1

1
/ 1

3

M
R R

M
 +

The rule of thumb Lindhard, 33, no.14

GasTPC

2
prj

1

/ 1
M

R R
M

 +⇒
k : electronic stopping constant

1/2(d /d ) k  

μ が小さいとき

M1 >> M2

ε
ε



The ranges, R & Rprj

Very Low Energy

を除くと
Pb/Ar 以外は
SRIM（青）と概ね
合っている



深さ方向の励起種分布

Rprj はSRIM



Head-Tail   CS2 CF4CS2

low diffusion CS- ions

release e- at the anode and 

get electron multiplication
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反跳核の多重散乱による散乱角の評価方法

b. 標準理論
     b1 厚さ x が薄い Meyer, Sigmund & Winterbon Eη 分布が考慮されない。

b2  厚さを考慮  Valdés & Arista Eη 分布が考慮されない。

c. Monte Carlo simulation

 Eη 分布？散乱角の定義？
 素過程の情報 が重要。

a. 簡易式  

Bohr-Williams, SRIM Table ? Eη 分布が考慮されない。

付与された
電子的エネルギー

Multiple Scattering

d. Range & Projected range, LETel

 標準理論に Eη 分布を考慮。

Electronic linear energy transfer

   LETel = - dEη/dx

Eη 分布

弾性散乱

5.3. Angular scattering



簡易評価
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Lindhard et al.

HMI tables

WinterbonSRIMはこれを使用（標的による）?
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Meyer, Sigmund & Winterbon

Thomas-Fermi interaction

Lenz-Jensen interaction
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Meyer  based on Thomas-Fermi interaction
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Angular scattering and lateral straggling

m x
 = 



θ : the scattering angle

ℓ = (y+z)1/2 : the lateral straggling

x : the thickness

The lateral displacement and the 

scattered angle θ are interrelated

Sidenius and Andersen gave an 

empirical formula

2.5

1/2
0.22u =

1/2 1.5

1/2
0.22

m m

u
 


=  = 




SRIM gives the lateral straggling
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エネルギー損失の効果
厚さを考慮

実験値と経験式

ε1 = με0

(1-μ) = 0 ~ 0.7 

1/2 2

0

1
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4m
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m m
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
=  = 

τ ≤ 0.4

平均のエネルギー εm を使って
近似

Valdés & Arista

Sidenius & Andersen



Fig. 3. Half width (HWHM) of the angular distribution θ½ for (a) 135 keV Ar recoil in Ar, and (b) 

100 keV Xe recoils in Xe as a function of the thickness x in the unit of the projected range Rprj. The 

solid curve indicates the middle value of Thomas-Fermi and Lentz-Jensen, (TF+LJ)/2 potentials, 

dot-dash curve shows the empirical form [27], closed circles with dashed curve show the inclusion 

of the energy-loss effect [24]. The dotted curve is the Bohr-Williams approximation and the open 

diamond show the estimate using the range and the lateral straggling obtained from SRIM [16]. The 

results shown in Fig. (b) basically apply also for CsI crystal.
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Range & Projected range, LETel

 標準理論に Eη 分布を考慮できる。

LETel
c = LETel

prj ·Rprj /Rc

ΔR// を含まない 釣鐘型の分布
（ ΔR// を含むと水滴型に）

散乱角 と Eη分布

Z1 = Z2
qnc を含まず、飛跡の広がりで、
電子励起状態の分布ではない。
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as : screening radius

b : impact parameter

a0 = 0.529×10-8 cm

R∞ = e2/(2a0) ≈ 13.6 eV

r0 ≈ N-1/3/2

nc : no. of collisions

ℓ = (y2+x2)1/2
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Monte Carlo Simulations

飛跡の3D分布。幹のみで枝は考慮されていない ?

角度広がりを得るには一手間必要 ?

注) 平均した飛跡と個々の飛跡はかなり違う。
発光効率・電離収率

Corturier et al. JCAP 2017

SRIM simulation



Corturier et al. JCAP

SRIM simulation

θ : polar angle



MC Simulation 

F

Tao, MIMAC, NIM A 985, 164569 (2021) 

θ½ は得られる Eη 分布は難しい

多くの event

測定されるのは event 毎

Monte Carlo Simulations

MIMAC gas
標準理論

θ½ for 6.5 keV and 35 keV F recoils 

in MIMAC gas as a function of the 

thickness x.



NEWSdm

Nuclear Emulsion

SRIM Command: “Ion Ranges (3D)”

Z2 ≈ 11.5

A2 ≈ 25

TRIM track generator MC program

θ½ for 35 keV C recoils and 200 keV Kr 

recoils in nuclear emulsion as a function 

of the thickness x. 
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