

YSZ基板を用いた超伝導検出器の開発

亀井 雄斗^{1,2},石徹白 晃治²,伊藤 凌太^{1,3},小林 達哉⁵,

美馬 覚4, 中城 悠翔5, 大前 太河5, 大谷 知行^{1,3}, 田井野 徹5

¹ 理研光量子工学研究センター,² 東北大学ニュートリノ科学研究センター,³ 東北大学, 4 NICT, ⁵ 埼玉大学

1.94Zrの二重ベータ崩壊

⁹⁴Zrが起こす二重ベータ崩壊は2*v*ββすら未発見

。 崩壊モード

 $^{94}\mathrm{Zr} \longrightarrow ^{94}\mathrm{Mo} + 2e^- + 2\overline{\nu}_e$ Q-value : 1.1 MeV ⁹⁴Zr -871.1 keV To Excited State $0^+ \rightarrow 2_{1^+}$: Q-value 0.23 MeV $\beta\beta$ •0 keV 0.87 MeV 脱励起 γ

2. LEKID [4]

• 有感面積が比較的広い超伝導共振器 1本の読み出し線で多素子からの信号を読み出し可能 ○ 低エネルギー閾値、高エネルギー分解能に期待

|E|

[検出原理]

エネルギー流入^a → クーパー対破壊^a → 力学インダクタンス変化^b → 共振周波数変化

superconducting resonator

2νββ半減期予想と実験的制限:

2 <i>νββ</i> の崩壊モード	予想 [yr] ^[1]	制限 [yr]
$0^+ \rightarrow 0^+$	9.4×10 ²¹	1.1×10 ¹⁷ [2]
$0^+ \rightarrow 2_{1^+}$	7.2×10 ³²	2.1×10 ²⁰ [3]

。 先行研究

NEMO-2:⁹⁶Zr 0vββ探索実験

→ 副産物的に⁹⁴Zr 2vββ に制限^[2].

HPGeを使った実験: $0^+ \rightarrow 2_1^+(\gamma)$ に感度あり ^[3]

。 改善に向けて

高感度化 → "線源"="検出器" 高 S/N → 高エネルギー分解能

ground plane substrate LEKID-1 feedline Design of LEKID

 $N_{\rm s}(E)$ Detection principle *excerpted from* [5] superconducting resonator substrate w/ $2\nu\beta\beta$ nuclei pohon mediation $2\nu\beta\beta$ event point Concept for $2\nu\beta\beta$ detection

Jeteci

3. 素子作製と測定手法

• 基板

イットリア安定化ジルコニア (YSZ, Y_2O_3 : **ZrO**₂)

→ KIDの基板材料としては新素材 ⁹⁴Zrの自然同位体比:~17%

4. 結果と考察

信号の透過特性S21を評価、共振ピークを確認した。

・Si基板LEKIDの測定

 ZrO_2 を室温下で安定化させるために Y_2O_3 を添加。 10×10×0.5 mm³ 単結晶基板 (方位 (100))

イットリア濃度: 9.5 mol%, 13 mol%, 20 mol%など (Y濃度により熱的な特性が異なる^[6]。)

。 デザイン

これまで使っていたデザイン(左)から変更(右) テスト用に個数の間引き

- フォノン収集効率増を目してグランド面の除去 (4 μm幅のグランド線でLEKID周囲を囲んだ)
- → 共振周波数 f₀: 4.55 5.85 GHz (on Si 基板)
- +線幅:4 µm, resonator volume: 1843.8 µm³
- +LEKIDと読出し線の間隔: 50 200 µm → 50 µmに統一

→ ほぼ設計通りの共振周波数だった。 グランド面を除去した影響はないと確認できた。

・ YSZ基板LEKIDの 測定

[dB]

 S_{21}

─→ 共振周波数が低周波側へシフトした。 歩留まりは100%にならず。

SONNETにより、共振周波数のシフトを1素子だけ確認した:

Nb DCスパッタ \rightarrow フォトリソ \rightarrow Nbドライエッチング @ クリーンルーム

o RF測定

◆ 3He/4He希釈冷凍機 測定温度~0.16 K (Nbの転移温度:9.2K) ・ベクトルネットワークアナライザ(VNA)

帯域:10 MHz-13.5 GHz

。 測定サンプル

Si基板(デザイン変更チェック)、 9.5 mol% YSZ基板のLEKID

Si基板 [GHz] YSZ基板 [GHz] 3.89 5.85

素子が5=4であれば、 おおむね合っている。

共振Q値 $Q_i = (1.4 - 2.9) \times 10^4$ (共振ピークのフィッティングにより算出)

→ Si基板LEKIDに比べて2桁悪化 (旧デザインのYSZ基板LEKIDよりも1桁悪化^[7])

歩留まりも悪いため、作製不良による影響が考えられる。 今後、工程中の取り扱いに注意して再作製し、再評価を行う。

5. Acknowledge and References

This work was supported by JSPS KAKENHI Grant Numbers JP23K13138. The exposure process in photolithography was performed using a Maskless UV lithography system at Nanoscience Joint Laboratory of CEMS, RIKEN.

[1] J. Suhonen, Nucl. Phys. A 864 63-90 (2011) [2] R. Arnold *et al.*, Nucl. Phys. A 658, 299-312 (1999) [3] E. Celi *et al.*, Eur. Phys. J. C. 83:396 (2023)

[4] S. Doyle, *et al.*, J. Low Temp. Phys., 151(1):530-536 (2008) [5] P. K. Day, et al., Nature, Vol.425, pp.817-821 (2003) [6] J. F. Bisson, et al., J. Am. Ceram. Soc. 83 [8], 1993-1998 (2000) [7] Y. Kamei, et al., preprint (2023), doi.org/10.21203/rs.3.rs-3488287/v1

July 5, 2024. UGRP2024@Osaka University, Osaka