長期測定におけるPICOLON高純度NaI検出器の現状

K. Kotera^(A), K. Fushimi^(B), D. Chernyak^(C), H. Ejiri^(D), K. Hata^(E), R. Hazama^(F), T. Iida^(G), H. Ikeda^(E), K. Imagawa^(H), K. Inoue^(E,I), H. Ito^(J), T. Kishimoto^(K), M. Koga^(E,I), A. Kozlov^(L), K. Nakamura^(I,M), R. Orito^(B), T. Shima^(D), Y. Takemoto^(I,J), S. Umehara^(D), Y. Urano^(N), Y. Yamamoto^(B), K. Yasuda^(H), S. Yoshida^(K) (by PICOLON collaboration)

Grad school of Tokushima Univ.^A, Tokushima Univ.^B, Univ. of Alabama^C, RCNP^D, RCNS^E, Osaka Sangyo Univ.^F, Tsukuba Univ.^G, I.S.C.Lab^H, IPMU^I, Tokyo Univ. Sci.^J, Osaka Univ^K, MEPhI^L, Osaka Butsuryo Univ.^M, Tohoku Univ.^N

The PICOLON Project PICOLON

(Pure Inorganic Crystal Observatory for Low-energy Neutr(al)ino)

NoI(TI)検出器を用いた宇宙暗黒物質探索:

- DAMA/LIBRAが報告する季節変動とは異なる挙動を示す報告有.
- DAMA/LIBRAと同等以上の低バックグラウンド(BG)NaI(TI)検出器を 用いた検証が必要不可欠.

Our aim:

- 低BG NaI(TI)検出器を用いた暗黒物質の発見
- DAMA/LIBRAの季節変動の検証[1].

PICOLONの現状#94 detector

2020年に高純度結晶(Ingot #85)の作成に成功[2].

以前報告した結果

DAMA/LIBRAに匹敵する高純度結晶

同様の純化手法で製造したIngot#94を用いた純化手法の再現性を確認 DAQ: Ingot#120を測定中…

今回はIngot#94の長期測定結果について報告

Ingot#94 (crystal)

		• • •		
	DAMA/LIBRA (NIM A592 (2008) 297.)	Ingot #85 (2020) [2]	Ingot #94	Goal
Crystal size	10.2×10.2×25.4 cm ³	7.62φ×'	7.62 cm ³	
³² Th [µBq/kg]	2~31	0.3 ± 0.5	4.6±1.2	<10
²⁶ Ra [µBq/kg]	8.7~124	1.0 ± 0.4	7.9 ± 4.4	<10
¹⁰ Po [µBq/kg]	5~30	< 5.7	19 ± 6	<50
		• • • •		•

当時のIngot#94 exposure is 28.3 day×1.3 kg.

Reference

Experimental Setup & Data Analysis

α線イベントから結晶内部のバックグラウンド(BG)量を算出

DAQ

- Ingot#94と#85結晶を 同一シールドにインストール。
- OR Triggerよりデータ収集

Exposure

- 以前の報告: 28.3 d×1.3 kg (Run20xx)

Result & conclusion

Result: Radio-isotopes (RIs) Activity

抽出された α 線spectrum: 明確なpeakを確認 → 各peakの幅を決定しEvent数Nを数えた。

青色はTh系列のRI

横軸は α線のエネルギー

半年間の測定で
やっとこの
イベント数!

Result (Preliminary)						
RIs	Energy rar	nge [keV]	Events N			
²³⁸ U, ²³² Th	3425	4300				
²³⁴ U, ²³⁰ Th, ²²⁶ Ra	4325	5050				
²²⁸ Th, ²²⁴ Ra, ²¹⁰ Po, ²²² Rn	5075	5850				
²¹⁸ Po, ²¹² Bi, ²²⁰ Rn	5875	6475				
²¹⁶ Po	6500	7150				
²¹⁴ Po	7425	7925				

ピーク中に含まれるRIは固有の値をもつ: 含まれるRIの連立方程式から放射平衡を用いて各RIのBGを算出する。

Summary and outlook

 U_2 (²²⁶Ra,

- α線イベント解析によるBG調査

²²²Rn, ²¹⁸Po, ²¹⁴Po)

- 20xx番代に引き続き低BG状態で安定

²¹⁰Po

- 解析の最適化
- β / γ 線spectrumのBG調査
- 低エネルギー側の解析
 - ノイズカット条件の最適化
 - (Run2000番代の解析結果) からノイズのpeakを確認)
 - Limitの計算

Preliminary

基準值未満

基準值未満