ニュートリノ質量、ダークマター、バリオン数非対称性を TeV スケールで同時に説明できるモデル 2024/7/5 大阪大学素粒子論(兼村)研究室 谷口宙 [arXiv:2403.13613] 「地下稀事象」領域研究会

Introduction

2012年にヒッグス粒子は発見されたが、**ヒッグスセクターの** 構造は未知 ヒッグス場の個数、表現、対称性… 電弱対称性の破れの物理、相転移の詳細 未解決現象との関係

現行、将来の各種実験で多角的に検証できる

3つの未解決現象	Ordinary Matter(4.9%)
ニュートリノ振動 ニュートリノが微小質量を持つ	Dark Matter(26.8%)
ダークマター	Dark Energy(68.3%)
全宇宙のエネルギーの26.8%を占め	カる
バリオン数非対称性	
現在の宇宙はバリオンしか見られ	ず、反バリオンが見られない。
$\eta_B = (5.8 - 6.5) \times 10^{-10}$ $\eta_B \equiv \frac{n_B}{n_\gamma} n_B$ From BBN Fields, et al(2024)	:バリオン数密度 :光子数密度

Q. ニュートリノ振動、ダークマター、バリオン数非対称性の3つの未解決現象をTeVスケールで同時に説明できないだろうか? 拡張ヒッグス模型と大きく関連する 検証可能なエネルギースケール Aoki-Kanemura-Setoモデルに着目 Model + 拡張ヒッグス + 右巻きニュートリノ 標準模型 Z_2 (Softly broken) $SU(3)_c$ $SU(2)_L$ $U(1)_Y$ Z_2 1/6 Q^i + $rac{u_R^i}{d_R^i} \over L^i$ 2/33 ・**拡張ヒッグス** → 追加のHiggs doublet ϕ_2 + singlet 粒子 η , S⁺ +3 -1/3+・**ExactなZ₂対称性** 「量子効果でニュートリノ質量生成 ダークマターの安定性を保証 $\mathbf{2}$ -1/2+ l_R^i -1+1/2 $\mathbf{2}$ ++ ϕ_1 ・Softly brokenな \tilde{Z}_2 対称性 \rightarrow FCNCを抑制 1/2 $\mathbf{2}$ + ϕ_2 ・**CPの破れ** $\mathcal{L} \supset -\frac{\lambda_5}{2} (\phi_1^{\dagger} \phi_2)^2 - h_i^{\alpha} \overline{(N_R^{\alpha})^c} l_R^i S^+ + \text{h.c.}$ CP位相 $\theta_5 (\lambda_5 = |\lambda_5| e^{i\theta_5}) \quad \alpha = 1,2,3, i = 1,2,3$ $\frac{\overline{N_R^\alpha}}{S^+}$ ____ ダークマター η +

まとめ、今後の展望
•ν振動、DM、BAUの3つの現象は標準模型では説明できない。
•AKSモデルは3現象を同時に説明するTeVスケールの模型である。
・本研究ではオリジナルのAKSモデルに新たにCPの破れを導入した。
・Electron EDM制限を回避しながらEWBGに十分な大きさのCP位 相を得る新たなメカニズムを考えた。
・LFV、DM、vデータなどの制限を満たしながら実際にElectron EDM制限を回避しつつ十分なCP位相が得られることを確認した。
・今後の展望
•強い一次相転移、バリオン数の評価を含めた解析
•3つの現象を同時に説明できるベンチマークシナリオの探索
 各種実験(加速器、フレーバー、DM、ν、EDM、 重力波など)での検証