大型キセノン実験の将来計画とそのR&D 小林雅俊 (名古屋大学 KMI) 2024.7.5 「地下稀事象」領域研究会@大阪大学

DAKWIN/XLZD					
	XENON10	XENON100	XENON1T	XENONnT	DARWIN/XL
Years	2005 - 2007	2008 - 2016	2012 - 2018	2019 - NOW	- 2030s -
Total Xe mass	25 kg	161 kg	3200 kg	8500 kg	>= 50 t
WIMPs sensitivity	~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

- DARWIN/XLZD実験:液体キセノンによる暗黒物質探索の将来実験
 - >=50トンクラスの検出器を用いて観測を行う計画

XENON実験の後継計画DARWINと、米国のLZ実験が将来的に合同 => XLZD

DARWIN/XLZD: Physics targets

a la

WIMP Dark Matter

- Spin-independent
- Spin-dependent
- Sub-GeV
- Inelastic

Sun

- pp neutrinos
- Solar metallicity
- ⁷Be, ⁸B, hep

Supernova

- Early alert
- Supernova neutrinos
- Multi-messenger astrophysics

Extended Dark Matter

- Dark photons
- Axion-like particles
- Planck mass

Neutrino Nature

- Neutrinoless double beta decay
- Double electron capture
- Magnetic moment

Cosmic Rays

• Atmospheric neutrinos

J. Phys. G: Nucl. Part. Phys. 50 013001

DARWIN/XLZD: Physics targets WIMP Dark Matter Extended Dark Matter • Spin-independent 10^{-44} • Spin-dependent • Sub-GeV • Inelastic 10^{-45} $[\mathrm{cm}^2]$ - WIMPに対する目標感度:10-49 [cm²] 10^{-46} $\sigma^{\rm SI}$ • 太陽・大気ニュートリノが支配的 なBGとなる領域

J. Phys. G: Nucl. Part. Phys. 50 013001

- 2種類のBG源:電子反跳事象(ER BG)・原子核反跳事象(NR BG)

現状の主なER BG: Rnの娘核

SUSやケーブル等からRnが湧き出す

• どちらのBGでも、太陽・大気ニュートリノが支配的なBGとなる領域を目指す

現状の主なNR BG源:U/Th

- 2種類のBG源:電子反跳事象(ER BG)・原子核反跳事象(NR BG)

現状の主なER BG: Rnの娘核

SUSやケーブル等からRnが湧き出す

• どちらのBGでも、太陽・大気ニュートリノが支配的なBGとなる領域を目指す

- 現状の主なNR BG源:U/Th

- 2種類のBG源:電子反跳事象(ER BG)・原子核反跳事象(NR BG)

• どちらのBGでも、太陽・大気ニュートリノが支配的なBGとなる領域を目指す

Low Dark Count SiPM

R&Ds for NR BGs:

- 低BG光センサーの開発
 - 現状、PMTは主要な中性子BG源の一つ
- 低BG PMT
 - XMASSでの開発
- SiPMベースのセンサー開発
 - 低ダークカウントSiPM
 - ハイブリッドセンサー
- 液体キセノンの赤外発光測定

R&D on New Photosensors

- 現行のLXe検出器は全て同じPMT (R11410)を使用
 - => BGの削減が必要(ステムのRIなど)
- XMASS実験が開発したR13111(3inch)やPandaX実 験が開発したR12699(2inch)がより低い放射能レ ベルを達成している
 - 特に238Uは1/10まで削減している他、R13111は 光電面の³⁹Kも削減に成功している

From talks at Nagoya workshop

R&D on New Photosensors

- PMT以外の候補:SiPM
 - ・純粋なSiチップのため、RIを低減できる
- •しかし:SiPMはダークカウントレート(DCR)が高く、そのまま では閾値が上がってしまう
 - •現状のSiPMのDCRはおおよそO(0.1)Hz/mm²
 - 7hit程度に相当 ⇔ 2-3hit @XENONnT
 - PMTと同レベルのO(0.01)Hz/mm²まで下げたい
- 日本グループで現在取り組み中:
 - SiPMの低DCR化
 - PMTの光電面と組み合わせたハイブリッドセンサー

Low Dark Count SiPM

Dark Count Rate: 50um pixel sample

- ・SiPMのダークカウント
 - ・室温~-100付近まではキャリアの熱励
 起が支配的 => 温度依存
 - -100度以下ではトンネル効果が支配的
 => Siチップ内部の電場構造に依存
- ・試作では、現行から約1/5の削減を達成
 - ・さらなる改善へ浜松ホトニクスと協力
 - ・PDEの測定も実施予定

New VUV setup @Nagoya

- ・現在、冷却装置と真空紫外分光計を組み合わせたセットアッ プを立ち上げ中
 - ・-100度で175nmの光を分光・照射
- ・SiPMやPMTのPDE測定、ハイブリッド検出器も試作品が出 来次第、各種測定を実施したい

Summary

- ・上記達成のため、現状から放射性BGを削減するためのR&Dが進行中
 - 目標:現状のXENONnTから1/10までの削減
- 進めていく
 - 低RI PMTやSiPMをベースとした光センサーを開発中
 - 低温でVUV光に対する応答を測定するセットアップを立ち上げ中

 DARWIN/XLZD: 50-100トンの液体キセノンを用いた将来の暗黒物質探索実験 •太陽・大気ニュートリノが主要なBGとなるような感度(10-49cm²)を目指す

・学変の計画としては、特に光センサーの低RI化やキセノンの発光波長測定を

