A02班:マヨラナ性検証に向けた 二重ベータ崩壊測定の高感度化 —CANDLES—

大阪大学核物理研究センター/名古屋大学 梅原さおり Umehara, Saori RCNP, Osaka University umehara@rcnp.osaka-u.ac.jp ■ ⁴⁸Ca二重ベータ崩壊測定検出器:CANDLES プロジェクト ■ シンチレーターシステム:CANDLES III

CaF₂シンチレータ: 305 kg (96個 × 3.2kg)
 液体シンチレータ (LS): 全方向ベトー検出器

■大型光電子増倍管

次世代二重ベータ崩壊測定装置:必要技術 ⁴⁸Ca濃縮 CaF₂蛍光熱量検出器 高純度結晶

□130日の測定結果

高純度21結晶の結果

	結果			
0vββ検出効率	0.36(21CaF ₂)			
事象数(exp)	0			
予想されるBG量	1.02			
0νββ半減期	>5.6 × 10 ²² year			
測定感度	2.8 × 10 ²² year			
Phys Rev D, 103, 092008 (2021)				
* 先行検出器ELEGANT VI				
測定時間∶4947 kg∙day(2年強)				
<u>半減期:>5.8×10²²年</u>				
・達成バックグラウンドレベル				
10 ⁻³ events/keV/year/(kg of ^{nat} Ca)				
 comparable to lowest background level 				

次世代検出器開発:測定感度 □ CANDLES シリーズ

	CANDLES III	次世代検出器	
⁴⁸ Ca存在比	0.187%	80%~	
⁴⁸ Ca 量	0.35 kg:CaF ₂ 300kg	数ton (2ton~)	
エネルギー分解能	6%	1.0% (required)	
$\langle m_{\nu} angle$ 感度	0.5eV	数meV (4-20meV)	
特徴	CaF2冷却 低バックグラウンド測定	濃縮 ⁴⁸ Ca & 高E分解能&低BG 逆階層~順階層	
$\langle \underline{m}_{v} \rangle = 5meV$ Energy resolution 0.045 4%(FWHM) 0.045 2V $\beta\beta$ 2.8% 0.04 2.8% 0.05 0.05 0.025 0.02 0.015 0V $\beta\beta$ 0.5% 0.025 0V $\beta\beta$ 0.5% 0.025 0.05% 0.025 0V $\beta\beta$ 0.5% 0.025 0.05% 0.025 0.05% 0.025 0.05% 0.025 0.05% 0.05 0V $\beta\beta$ 0.5% 0.05 0V $\beta\beta$ 0.5% 0.05 0.5% 0.5% 0.05 0.5% 0.05 0.5% 0.05 0.5% 0.5% 0.5% 0.05 0.5% 0.5% 0.5% 0.05 0.5% 0.5% 0.5			

青色レーザ 一: 安定性 □ 青色レーザーの安定性テスト ■ PDH法による安定化

- ■コントロール信号を各スレーブレーザーへ
- 温度調整による波長コントロール

波長安定性テスト

Ca モニタ(TOF system)

メインチェンバー: 6 レーザー & 3 ヒーターチェンバー まず最小システムで運転(1 レーザー & 1 チェンバー)

次世代検出器開発

□ ⁴⁸CaF₂ 蛍光熱量検出器

■ 予想されるバックグラウンド

■ 2vββ事象:エネルギー分解能0.5%、1トン⁴⁸Caで~0.02事象/年 ■結晶内部放射性不純物によるα線事象:粒子弁別

二重ベータ崩壊核:核行列要素

□ 二重ベータ崩壊研究

明日の発表(岩田順敬さん)

- 核行列要素:実験値がないので理論計算。しかしモデル依存。
 - 理解を深め、不定性を低減するために核物理のデータが必須。
 - 原子核の質量、結合エネルギー、励起エネルギー準位、遷移強度

- 雪量項:核行列要素の精度が<m_{ββ}>の精度
- 右巻き相互作用項:相互作用強さは原子核によって異なる
 - 例: ⁴⁸Ca、⁸²Se、⁹⁶Zrらと⁷⁶Ge、¹⁰⁰Mo、¹³⁰Te、¹³⁶Xeらは相補的
- 多様核種での測定
- □ 将来的に多様核種での測定:結晶をいれかえた測定
 - 蛍光熱量検出器:⁴⁸Ca、⁸²Se、¹⁰⁰Mo、¹³⁰Teなど

T. Fukuyama and T. Sato, arXiv:2209.10813 (2022) JHEP, 2023, 49(2023)

まとめ

CANDLES プロジェクト

■ シンチレーターシステム:CANDLES III

■ 次世代二重ベータ崩壊測定装置:48CaF2蛍光熱量検出器

■⁴⁸Ca 濃縮

■基本濃縮装置構築

■コスパよい高出力レーザーの開発

■ 高出力レーザー素子等

■ 蛍光熱量検出器

■位置依存性を取り除くための複数センサーシステム導入

■大型化に向けて多重化読み出しステムの開発

■高純度結晶

■偏析法による高純度化技術確立

□ まとめ