

ISAI実験の準備状況、感度見通し、アップグレードについて

小貫 良行,

井上慶純, 武多昭道^A, 藤井俊博^B, 鶴剛^C, 松田真宗^C, 天野雄輝^C, 佳山一帆^C, 岩崎啓^C, 難波宏樹^C, 穴澤萌衣^C, 吉村隆孝^C, 池田智法^D,上ノ町水紀^E, 身内賢太朗^F, 武田彩希^G,

東大素セ、東大地震研A、大阪公大理B、京大理C、高エネD、東工大工E,神戸大理F、宮崎大工G、

本研究は新学術「地下宇宙」 D02班からご支援いただきました。

アクシオン

- ・ 強いCP問題
 - QCD LagrangianにCP非保存項が存在→中性子で有限なEDM
 - 測定では中性子のEDMが強く抑制
- Peccei-Quinn 機構
 - 強いCP問題を解決。アクシオンの出現。
- Invisible axion 模型
 - DFSZ axion...レプトンとクォークとツリー相互作用
 - KSVZ(hadronic) axion...核子とツリー相互作用

axion-gamma interaction $g_{a\gamma}$

axion-electron g_{qe}

Igor G. Irastorza et al., Progress in Particle and Nuclear, 102(2018)89-159

低い再加熱温度シナリオ Pierluca Carenza et al., JCAP07(2021)031

axion-nucleus g_{aN} (Our target)

Luca Di Luzio et al, Physics Reports 870 (2020), 1-117

太陽コア中の⁵⁷Feからのアクシオン

- m_a < 745 eV@95%C.L,
 Si(Li), 61days, M. Krčmar et al., Phys. Lett. B 442 (1998) 38.
- m_a < 216 eV@95%C.L,
 PIN photo diodes, 14days T. Namba, Phys.Lett.B 645, 398 (2007)
- m_a < 145 eV@95%C.L., Si(Li), 45days, A.V. Derbin et al., Phys.At.Nucl. 74, 596 (2011)

⁵⁷Fe 天然存在比 2.119% (メスバウア核種) Doppler broadeningにより吸収可能

 R_d : ⁵⁷Fe de-excitation rate

N: observed event

M: ⁵⁷Fe mass

 η : γ fraction without internal conversion 0.105

 ε : detection efficiency

Moriyama, Phys.Rev.Lett,75,3222

Background data

gan単独を測定できる点がユニーク

イベント駆動X線ピクセルセンサーXRPIX

- Originally developed(ing) for future X-ray astronomy mission
- ラピスセミコンダクタFD SOI プロセス0.2μmで製造
- 24.6 mm \times 15.3 mm \times 300 μ m (608 \times 384 pixels, pix size 36 μ m square)
- 各pixelが時間分解能10 μs のトリガー回路を持つ
 - 反同時計数が可能
- 高いエネルギー分解能: 590 eV (FWHM) @14.4 keV(Goal: 250 eV)

T.G. Tsuru et al., Proc. SPIE 10709,(2018)

Major BG source(Y. Onuki et al., NIM A, 924, 448–451 (2019))

ISAIではXRPIX7(Double SOI)を採用(最新はSingle SOIのXRPIX10)

Y. Onuki et al., NIM A, 924, 448–451 (2019)

Ose M-thesis, UT, 2017.

低BGリジッドフレキ基板

XR7リジッド基板(核医学用途)を用いたセットアップ

全実装部品 のアクティビティをHPGeで測定→基板(G10)本体が主要BG源。 Geant4でBG simulation

XR7低BGリジッドフレキ基板(アクシオン探索用途)を開発

フレキ(ポリイミド)にチップ実装し、表面実装部品を厳選することでシールド内アクティビティ~1/1000に削減。

Ethernet

- 95%濃縮 ⁵⁷Fe 箔を2枚のXR7でサンドウィッチ
- 通常Fe 箔 を2枚のXR7でサンドウィッチ
- t5mm OFC と t50mm 鉛による環境放射線遮蔽

- SEABASボード読出し
- IEEE Trans. Nucl. Sci. 55(3) 1631 (2008).

- 温度モニター
 - 恒温槽
 - PT100+ロガー
- **∮1mm**深さ60mmピンホール越しの²⁴¹Am較正線源
 - コリメートされ、XRPIXの一部に照射
 - 観測しながらゲイン変動のモニター可能
- 位置検出型プラシンVETOカウンター
 - 三角シンチ + SiPMの千鳥配置したモジュール
 - モジュール2層を直交に配置して2次元位置検出カウンター
 - カウンターをシールド上下に配置

IEEE Trans. Nucl. Sci.,

• 全144chをPETNETでタイムスタンプ (62.5psec resolution)

リジッドフレキ基板

XR7

フレキケーブル

- 95%濃縮 ⁵⁷Fe 箔を2枚のXR7でサンドウィッチ
- 通常Fe 箔 を2枚のXR7でサンドウィッチ
- t5mm OFC と t50mm 鉛による環境放射線遮蔽

京都大学理学部物理学科東棟

- 95%濃縮 ⁵⁷Fe 箔を2枚のXR7でサンドウィッチ
- 通常Fe 箔 を2枚のXR7でサンドウィッチ
- t5mm OFC と t50mm 鉛による環境放射線遮蔽

鉄箔をPEEK板で 保持

> XR7実装フレキ基板 を両面に設置

O-free Cuで遮蔽

- 95%濃縮 ⁵⁷Fe 箔を2枚のXR7でサンドウィッチ
- 通常Fe 箔 を2枚のXR7でサンドウィッチ
- t5mm OFC と t50mm 鉛による環境放射線遮蔽

鉄箔をPEEK板で 保持

> XR7実装フレキ基板 を両面に設置

O-free Cuで遮蔽

- 95%濃縮 ⁵⁷Fe 箔を2枚のXR7でサンドウィッチ
- 通常Fe 箔 を2枚のXR7でサンドウィッチ
- t5mm OFC と t50mm 鉛による環境放射線遮蔽

更に鉛で遮蔽

- 95%濃縮 ⁵⁷Fe 箔を2枚のXR7でサンドウィッチ
- 通常Fe 箔 を2枚のXR7でサンドウィッチ
- t5mm OFC と t50mm 鉛による環境放射線遮蔽

更に鉛で遮蔽

XR7

リジッドフレキ基板

ISAI 検出器

- 95%濃縮 ⁵⁷Fe 箔を2枚のXR7でサンドウィッチ
- 通常Fe 箔 を2枚のXR7でサンドウィッチ
- t5mm OFC と t50mm 鉛による環境放射線遮蔽

フレキケーブル

検出効率の推定

- XR7で高いセンサーバイアスで動作しない問題 →暫定的にバイアス電圧10Vで運用
- Amptek SDDを用いてコリメート241Am線源の絶対放射強度1573[Hz]を算出。

Geant4でも同様の強度を確認。

• XR7に線源照射し1pixelヒット強度33.19[Hz]から

検出効率を推定。

=>33.19/1573=2.1% 空乏層圧20umに相当

Efficiency

33.19 Hz@13.9keV

Amptek SDD Efficiency

XR7検出器量産

- ベアチップ選別
 - 24個のXR7ベアチップのプローブ試験
 Digital、Analog電源パッドに針を当て電圧1.8V、3.3Vを印加し、 電流値を測定。電流値正常なチップを選別。
- ・チップ実装動作試験
 - 手持ち6枚のXR7用リジッドフレキ基板にチップ実装
 - 2チップが完全動作。歩留りの悪さ。Double SOIの難しさ
 - フルISAIに基板の再発注が必要(6枚1セット)

まずは手持ちの完動2チップで1/2 ISAI(右)の実施を目標 →検出効率が半減するが、BG差し引き可能(1/2 ISAI)

片方読出しによるBGランと1/2 ISAI予想感度

1/2 ISAIの更なる低BG化

- VETOによる宇宙線・環境放射線BGの削減
 - XR7同士のVETO→2枚読出しを準備中
 - プラシンVETOカウンター→最後の1層を組立中
 - 地下に行く
- 低BG鉛の導入
 - 鉛シールド中の210Pb由来のBG(通常鉛~0.1-10kBq/kg)
 - 京大榎戸研から古鉛を譲渡
 - HPGeで210Pb量を測定。30±6Bq/kgの低BG鉛と判明*
 - 238U(上中流)、232Th系列、40Kなど有意な信号なし
 - 現行通常鉛シールドを全て低BG鉛に置き換え可能
- Geant4によるBGシミュレーション
 - 開発中
 - 回路素子単体(キャパシタ等)のアクティビティ→測定済
 - 支配的BG源(検出器由来、宇宙線由来、環境放射線由来)の特定 →次にどれを減らすか?

RIKEN(from Minowa-Lab)

- SEIKO EG&G GEM-25195
- Low intrinsic BG
- Std. THR ($>\sim$ 50keV)
- → For other than ²¹⁰Pb

UTokyo Isotope Center

- Canberra GX4018
- Moderate intrinsic BG
- Low THR(>~10keV)
- → For ²¹⁰Pb

*東北大市村さんから参考値として 5Bq/kgの鉛をお借りしました。 ありがとうございました。

更なる高感度化へのアプローチ

同程度の費用

Near term

- 1/2 ISAI →フルISAI
 - XR7用リジッドフレキ基板の再生産
 - XR7の検出効率が低い(2%@1/2 ISAI)
- XR7→XR10(前新学術で開発)
 - XR10用リジッドフレキ基板の開発
 - 検出効率~50%@14.4keV、センサー300um全空乏化
 - エネルギー分解能向上
 - 計装アンプ不要→低BG化(?)

Long term

- 地上→地下
- 大型デジタルXRPIX
 - XRPIX12(ADC内蔵の小チップセンサー)がテープアウト
 - 更なるエネルギー分解能向上
- 多アレイ化

1/2 ISAIで経験・実績を積み、 その後は**XR10**に移行するのがよさそう

まとめ

- アクシオン核子相互作用gaNのみを用いた太陽アクシオン探索実験ISAI
 - アクシオンが57Feで吸収された後に原子核から14.4keV γ線が放出。XRPIX7で観測。
 - 濃縮57Feと通常FeをそれぞれXRで挟んだ検出器を用意し、BGを差引いた残差を信号事象として計数
 - リジッドフレキ、プラシンカウンターによるBG削減

• 状況

- ・ 検出器6台製造し、2つが完動。プラシンカウンターの3/4を量産。
- 1/2 ISAIを目指して準備中。
- VETOなしBGレベルは先行実験と同レベルを達成
- 検出効率が低いため、BGの削減が先行実験を超える鍵。
- 1/2 ISAIの更なる高感度化
 - XR7→XR10で検出効率~50%に大きく改善。 エネルギー分解能も向上。

ご興味ある方、一緒にやりませんか?是非お声がけください!

マスコットキャラ (ISAIさん)

太陽をイメージした髪型

鉛ブロックの本

太陽中心でできたFe-57 とアクシオンの髪飾り

三角シンチレーターの腕

XRPIXのベスト

XRPIXで挟んだFe-57と アクシオンのアクセサリー

フレキシブル基板のスカート

リジッド基板の裾

三角シンチレーターの脚