

スーパーカミオカンデの万能化と超新星ニュートリノ検出にむけて

東京大学宇宙線研究所 関谷洋之

学術変革「地下稀事象」領域研究会 2024年7月6日 大阪大学

C01 Group in UGRP

 Frontier of Rare Events in the Universe: Investigating the Origin of Elements in the Universe with the Universal Supernova Neutrino Detector

Super-Kamiokande VII (since July 5, 2022)

Atmospheric v

TeV

Ring imaging Gd-doped water Cherenkov detector

- 49.5k m³ of pure water with 16.2 tons of Gd(0.03 w%)
 - 39 tons of $Gd_2(SO_4)_3 \cdot 8H_2O$
 - ~75% Neutron capture efficiency
- Target volume 32k m³ for SN v

~100

LowE Group SNV

Solar v

~3.5 MeV ~20

- 11129 50cm PMTs for Inner detector
- 1885 20cm PMTs for outer detector
- 1km (2700 mwe) underground in Kamioka

atmpd Group

- Measurable : Energy, neutrino types, and direction
- Most sensitive to \overline{v} through inverse beta decay in the Proton decay low energy region.

~1 GeV

The Gd-loading

Separating ES from IBD allows
improving the SN direction pointing accuracy.
→ Gd enhances the IBS tagging

Neutron tagging for interaction (especially IBD) identification

• Originally only by delayed coincidence with 2.2MeV gamma from p-capture

Supernova neutrino in SK $\bar{\nu}_{a} + p \rightarrow e^{+}$

The main channel Inverse Beta Decay reaction (IBD) ~90%

The direction of the positron does not reflect the direction of the neutrino

As the neutrino telescope Elastic Scattering interactions (ES) ~5%

The electron keeps the neutrino direction information.

 $\nu + e$

"Universalization of Super-Kamiokande"

Make the most of SK for the next Galactic SN!

- $\overline{\nu_e}$ for the $\mbox{per-SN}$ alarm and \mbox{DSNB} search
- v_e for the SN alarm with pointing
- v_x for **full information extraction** from SN

Utilize ¹⁶O interaction

CC interaction:
$$\nu_{e} + {}^{16}O \rightarrow e^{-} + {}^{16}F$$

 $\overline{\nu}_{e} + {}^{16}O \rightarrow e^{+} + {}^{16}N$,

NC interaction:
$$\nu_x + {}^{16}\text{O} \rightarrow \nu_x + \text{O}^*/\text{N}^*$$

 ${}^{16}\text{O}^* \rightarrow {}^{15}\text{N} + \text{p} + \gamma$
 ${}^{16}\text{O}^* \rightarrow {}^{15}\text{O} + \text{n} + \gamma$

Pre-SN alarm for nearby SNe

	Burning Stage	Duration	Average v energy 0.71 MeV		
0	С	300 years			
Si He	Ne	140 days	0.99 MeV		
H H	0	180 days	1.13 MeV		
	Si	2 days	1.85 MeV		

Duration of burning stages and the fraction and average energy of electron neutrinos emitted by **pair-annihilation** for a 20 M⊙ star (**Astropart.Phys. 21 (2004) 303-313**)

and many Models

- IBD is the main channel
 - The energy threshold for IBD is 1.8 MeV
- Low-BG low-threshold required

Pre-SN alarm

- During the KamLAND offline period, SK's role is important.
 - SK only GCN_circular?
 - Faster alarm system (like GCN_notice) will be tried.
 - Secure the reliability

Number of events in past 12 hours

Warning significance for 150pc SN

চ

Significance

The neutrino burst alarm

The vital role for Super-Kamiokande

Core

surface

Optical magnitude

Shock wave travels with ~1/30 of the speed of light (~10⁴ km/sec).

Shock breakout happens

when the shock wave

envelop

Realtime supernova monitoring of SK

SK's SN monitoring system "SNWatch." arXiv:2403.06760 accepted by ApJ

- Quick online analysis code, reconstructing the events and fitting SN direction
- In case the event burst matches the criteria (uniformity of the events in the detector, number of events), an automatic alarm is sent
 - The criteria are determined so that we would have 100% SN detection efficiency at the Large Magellanic Cloud.

Quick IBD tagging implemented in SNwatch

0.03% Gd makes IBD tagging efficient in SN monitoring Speed-oriented real-time simple IBD tagging algorithm Y.

Y. Kashiwagi et al., Accepted by ApJ, arXiv:2403.06760

11

10kpc

NMO

Supernova 💒

 $\hat{d}_{\rm SN}^{\rm true}$

ν

SK

Nakazato 20M

 $\cos \theta_{\rm SN} = \hat{d}_{\rm SN}^{\rm true} \cdot \hat{d}_{\rm SN}^{\rm true}$

z=0.02, 200ms

delayed candidates

events/bin

(d) Hüdelpohl model

(e) Fischer model

(f) Tamborra model

12

Upgrading with HealPix direction estimation

- HEALPix-based fitter (Hierarchical Equal Area isoLatitude Pixelation of a sphere):
 - A sphere of the sky is made and divided in pixels of equal area
 - The pixels are populated with the projection of each event's reconstructed direction on the sphere.
 - The sphere is then smoothed with a Gaussian function
 - The pixel with the maximum number of events is then selected as the initial SN direction → Maximum Likelihood fitting

Expected further improvements

- The IBD tagging algorithm
 - Better selection of prompt/delayed events allows a better neutron capture event selection.
 - \rightarrow reduction of the neutron capture event contamination in the selection.
- Reduction of the analysis energy threshold
 - To improve the selection of ES events.

To be implemented in SNWatch

14

Make the most of SK

• The number of ¹⁶O interactions in SK is still larger than the number of all interactions in other detectors.

10

5

15

20

25

Neutrino Energy [MeV]

30

35

40

45

 $+\bar{\nu}_{\mu}+\nu_{\tau}+\bar{\nu}_{\tau})$

Nakazato model neutrino energy 9

Expected number of interactions in SK for 10kpc SN

Generated by	Wilson			Nakazato	1		Mori		
SKSNSim	No Osc.	NMO	IMO	No Osc.	NMO	IMO	No Osc.	NMO	IMO
IBD $(\bar{\nu}_{\rm e})$	7431	8207	9970	3542	3893	4693	3275	3422	3745
ES $(\nu_{\rm e})$	223	231	229	173	172	171	177	148	156
ES $(\bar{\nu}_{\rm e})$	97	97	98	63	66	72	60	61	63
ES (ν_x)	80	79	80	60	60	60	52	57	56
$\mathrm{ES}~(ar{ u}_x)$	69	69	69	52	51	48	45	45	44
${}^{16}O~{\rm CC}~(\nu_{\rm e})$	44	1034	729	48	180	139	8	86	62
$^{16}\mathrm{O}~\mathrm{CC}~(\bar{\nu}_{\mathrm{e}})$	195	329	633	46	68	116	30	42	71
16 O NC ($\nu_{\rm e}$, 15 N)	4	89	63	4	15	12	1	8	5
16 O NC ($\bar{\nu}_{e}$, 15 N)	22	43	89	5	8	16	3	4	8
16 O NC (ν_x , 15 N)	177	93	119	31	20	23	15	8	10
16 O NC ($\bar{\nu}_x$, 15 N)	177	156	112	31	28	21	15	14	10
16 O NC ($\nu_{\rm e}$, 15 O)	1	24	17	1	4	3	0	2	1
16 O NC ($\bar{\nu}_{e}$, 15 O)	6	12	24	1	2	4	1	1	2
16 O NC (ν_x , 15 O)	48	25	32	9	5	6	4	2	3
^{16}O NC $(\bar{\nu}_x, {}^{15}O)$	48	42	30	8	8	5	4	4	3
total	8622	10530	12294	4074	4580	5389	3690	3904	4239
Generated by	Hüdelpoh	վ		Fischer			Tamborra	ì	
SKSNSim	No Osc.	NMO	IMO	No Osc.	NMO	IMO	No Osc.	NMO	IMO
IBD $(\bar{\nu}_{\rm e})$	3048	3052	3049	1884	1990	2242	3830	3487	2718
$\mathrm{ES}~(\nu_\mathrm{e})$	146	124	132	90	87	88	135	82	99
$\mathrm{ES}~(\bar{\nu}_{\mathrm{e}})$	53	53	53	35	35	37	50	45	35
ES (ν_x)	43	47	46	31	31	31	28	38	35
ES $(\bar{\nu}_x)$	38	38	38	27	26	25	25	26	30
16 O CC ($\nu_{\rm e}$)	12	32	26	5	27	21	55	90	80
¹⁶ O CC $(\bar{\nu}_{e})$	30	31	33	15	18	27	97	90	77
¹⁶ O NC ($\nu_{\rm e}$, ¹⁵ N)	1	3	2	0	2	2	5	8	7
¹⁶ O NC ($\bar{\nu}_{\rm e}$, ¹⁵ N)	3	3	3	1	2	2	11	10	8
¹⁶ O NC (ν_x , ¹⁵ N)	6	4	4	5	3	4	16	13	14
¹⁶ O NC $(\bar{\nu}_x, {}^{15}N)$	6	6	6	5	4	4	16	17	19
¹⁶ O NC ($\nu_{\rm e}$, ¹⁵ O)	0	1	1	0	1	1	1	2	2
¹⁶ O NC ($\bar{\nu}_{e}$, ¹⁵ O)	1	1	1	0	0	1	3	3	2
¹⁶ O NC (ν_x , ¹⁵ O)	1	1	1	1	1	1	4	3	4
$^{16}O \text{ NC} (\bar{\nu}_{\tau}, {}^{15}O)$	2	2	1	1	1	1	4	5	5
total	3390	3398	3396	2100	2228	2487	4280	3919	3135

Current limitation

1000 simulations)

events/25ms (average of

True interactions in SK

What currently can be extracted from SK (online analysis)

Make use of ¹⁶O channel in SK

- They are more complicated topologies than IBD's and ES's.
- All final state particles should be investigated.

Neutrino interaction measurement at ORNL SNS

- ORNL SNS is an ideal place to measure these interactions!
- High intensity neutrino available that matches supernova neutrino energy range
- Ongoing D2O detector measurement for precise flux normalization

ORNL SNS neutrino spectra

17

COHERENT

- The COHERENT collaboration measures CEvNS (Coherent Elastic Neutrino-Nucleus Scattering) using the high-quality pion-decayat-rest neutrino source at the Spallation Neutron Source in Oak Ridge
- Interaction with people working on the same interest but with different detector techniques

Japan group members

- ICRR, University of Tokyo Hiroyuki Sekiya (PI), Masayuki Harada (Postdoc)
- Kyoto University Roger Wendell (PI), LiCheng Feng (Student)
- Okayama University Yusuke Koshio (PI), Yota Hino (Postdoc), Fumi Nakanishi (Student)
- University of Tokyo Yasuhiro Nakajima (PI)

+ potential graduate students (?)

100L detector

- Study backgrounds for v_e -O interactions
 - Most problematic backgrounds thought to be cosmicinduced photons
 - Small detector allows to place lead shield thicker than the current D₂O detector
 - Nal counters to detect both cosmic-and neutrinoinduced photons
 - Movable for study background at several places
- Make initial measurement of v_e-O CC interaction: $v_e + {}^{16}\text{O} \rightarrow e^- + \text{F*}$

100L detector simulation

- A quick MC simulation to check signal and backgrounds with the 100L detector geometry
 - Also simulate interaction with cosmic muon and concrete ceiling (geometry based on J- PARC MLF)
- Signal rate scaled from the D₂O detector expectation
 - 390 v_e-O CC interactions / 2 SNS-year @1.4 MW
- Cosmic background rejection due to duty factor (6 x 10-4) and veto efficiency (1 x 10-4) assumed

Events in 10 - 30 MeV / 2 SNS years

Total BG (Lead 0 cm)	7896
Total BG (Lead 5 cm)	282.7
Total BG (Lead 10 cm)	14.4
ν _e -Ο CC	34.5

 Could detect a few tens of events with two SNS-years of data taking!

Gamma detection by Nals

• We would also like to try to detect deexcitation gammas from

$$\nu_e + {}^{16}\text{O} \rightarrow e^- + F^*$$

(e.g. ${}^{16}\text{F}^* \rightarrow {}^{15}\text{O}^* + p, {}^{15}\text{O}^* \rightarrow {}^{15}\text{O} + \gamma(6.18 \text{ MeV})$

- Important for understanding the interaction mechanism and discriminate against backgrounds.
- With 40 (2" x 4" x 16") crystals surrounding the side of the 100L tank, we can detect ~23% of gammas induced by neutrino interactions on ¹⁶O!

Diffuse Supernova Neutrino Background

Neutrinos emitted in past supernova explosions and stored in the current universe \rightarrow promising extra-galactic ν

Results

SK-Gd energy spectrum

Differential flux upper limits

Spectral-independent analysis

Tension from zero assumption

Spectral-fitting analysis

Spectrum fitting analysis to extract significance

- Total 6779 days of SK (5823 d pure-water and 956 d Gd-water) combined
- Analysis threshold: $E_{\nu} > 17.3$ MeV
- Suppress uncertainty of background prediction by fitting both $N_n=1$, $N_n \neq 1$

<u>Highlight:</u>

- Sensitivity of SK-Gd ~1000 days exposure is already comparable level it with ~6000 days of pure-water SK
- Best fit of whole SK observation is 1.4^{+0.8}-0.6 cm⁻² s⁻¹ for $E_{\nu} > 17.3$ MeV

 \rightarrow exhibit ~2.3 σ excess!!

Aim for 3σ in 5 years

Conclusion

UGRP C01: Advancing Super-Kamiokande for Core-Collapse Supernovae (CCSNe)

• Enhance Pre-SN Neutrino Alarms:

• Develop more reliable and faster pre-supernova neutrino alarms.

Improve SN Alarm Accuracy:

 Increase the precision and speed in determining the direction of supernova explosions and issuing supernova alarms.

Measure Neutrino Interactions:

 Conduct neutrino-¹⁶O interaction measurements at ORNL for better CCSNe detection at Super-Kamiokande.

• Pursue DSNB search:

• Continue efforts in detecting the Diffuse Supernova Neutrino Background (DSNB).