質量分析計による極微量放射性核種測定

筑波大学 数理物質系/放射線・アイソトープ地球システム研究センター 坂口 綾

自己紹介

坂口 綾 筑波大学 数理物質系/生命環境系 放射線・アイソトープ地球システム 研究センター

研究テーマ

環境中の天然・人工放射性核種を 利用した環境動態研究

世界の核汚染調査

自己紹介

坂口 綾 筑波大学 数理物質系/生命環境系 放射線・アイソトープ地球システム 研究センター

研究テーマ

環境中の天然・人工放射性核種を 利用した環境動態研究

世界の核汚染調査

実は・・・

山本 政儀先生 (金沢大LLRL、学位取得時の指導教員)

KAMIOKANDE-IIで地下水・超純水・空気中の放射性核種測定を担当していた

学術変革 横串としての極微量放射性核種分析

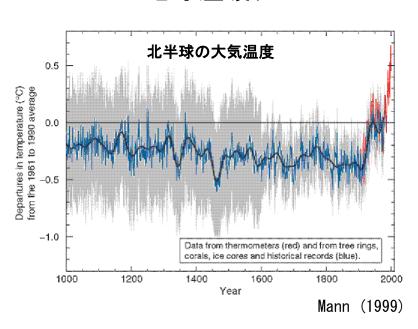
難溶解性試料、高マトリクス試料中の極微量放射性核種測定法確立(クリーン技術確立)

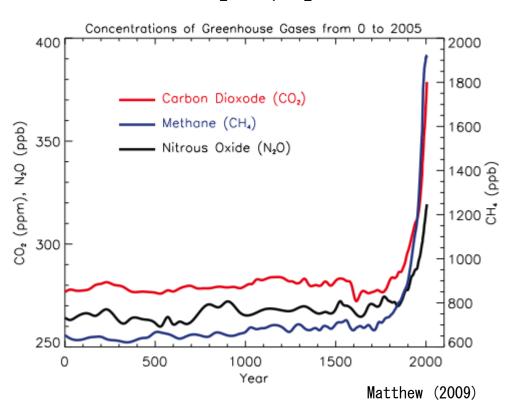
- KamLAND 東北大
 - *PENフィルムやBis-MSBに含まれるU, Th分析
- CANDLES 阪大・徳島大
 - * CaF₂の材料やCaF₂そのものに含まれるU, Th分析
- · 暗黒物質検出 横浜国立大
 - *液体シンチレータに含まれるU, Th分析
- SK-Gd 東大 期間限定お仕事
 - *追加投入 硫酸Gdに含まれる²²⁶Ra分析

極微量²¹⁰Pbの分析法確立 -人新世紀年代測定法への応用-

地質時代区分

~5億2400万年	先カンブリア時代						
5億2400万年~ 2億5000万年	古生代						
2億5000万年~ 6600万年	中生代	三畳紀					
000077 4		ジュラ紀					
		白亜紀					
6600万年~ 258万年	新生代						
258万年~ 1万1700年		更新世					
1万1700年~		完新世					


https://yumeraku.net/saiyo/2018/07/26/2030%E5%B9%B4%E3%81%AB%E6%B0%B7%E6%B2%B3%E6%9C%9 F%E5%88%B0%E6%9D%A5%EF%BC%81%EF%BC%81%EF%BC%81%EF%BC%9F%EF%BC%9F%EF%BC%9F/


https://aomori-jomon.jp/essay/?p=9890

地球環境の変化

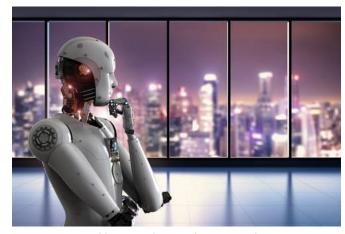
地球温暖化

大気中CO₂, CH₄, N₂O濃度

絶滅速度

	絶滅速度(100年) 10000種当たり
過去	0.1~1 種
近年(100年間)	100 種

"人間"が地球に影響を及ぼし始めた →これまでの地質時代と大きく異なる

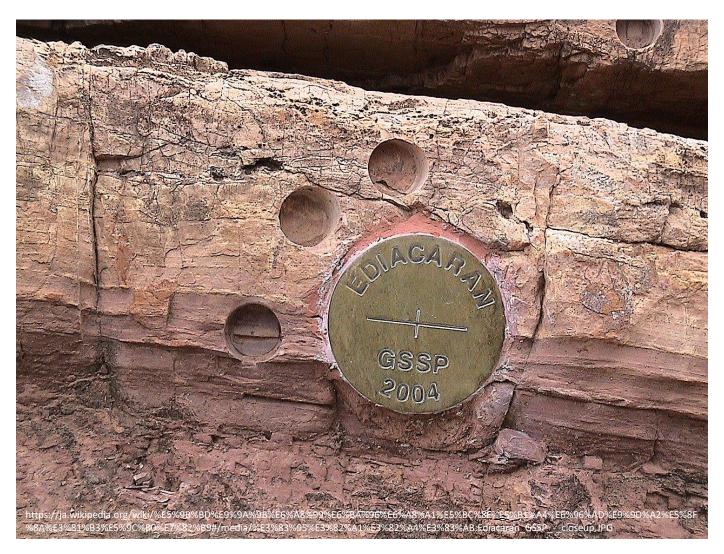

環境省

新しい地質時代区分—人新世

~5億2400万年	先カンフ	ブリア時代	•				
5億2400万年~ 2億5000万年	古生代						
2億5000万年~ 6600万年	中生代	三畳紀					
000077 4		ジュラ紀					
		白亜紀					
6600万年~ 258万年	新生代	第三紀					
258万年~ 1万1700年		第四紀	更新世				
1万1700年~???			完新世				
???~			人新世				

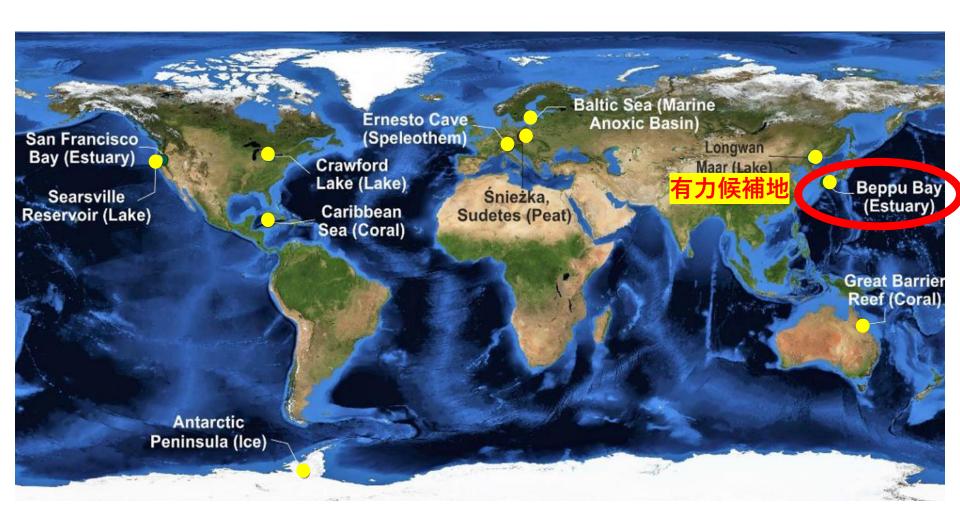
https://www.euronews.com/green/2021/09/24/who-air-pollution-is-worse-than-we-thought-but-there-s-hope-we-can-fix-it

https://jss1.jp/column/column_34/


いつまでナウマンゾウや縄文時代と一緒の時代区分 なんだよう!?

新たな時代区分の設定が 必要となっている。

(Steffen et al. 2015; Water et al., 8 2018)


時代定義のためのGSSP

Global Boundary Stratotype Section and Point

年代層序単元の区分である階の下限を定める境界模式層の

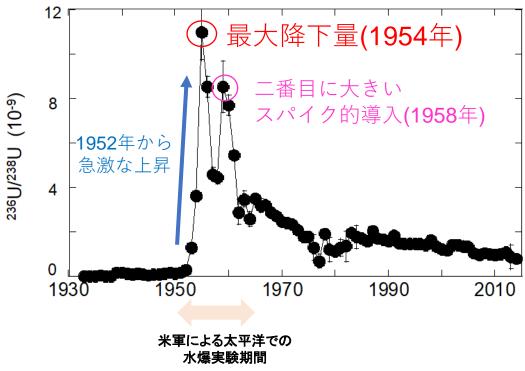
世界の人新世GSSP候補地

日本の 別府湾・堆積物 が人新世GSSPの 有力候補地に!

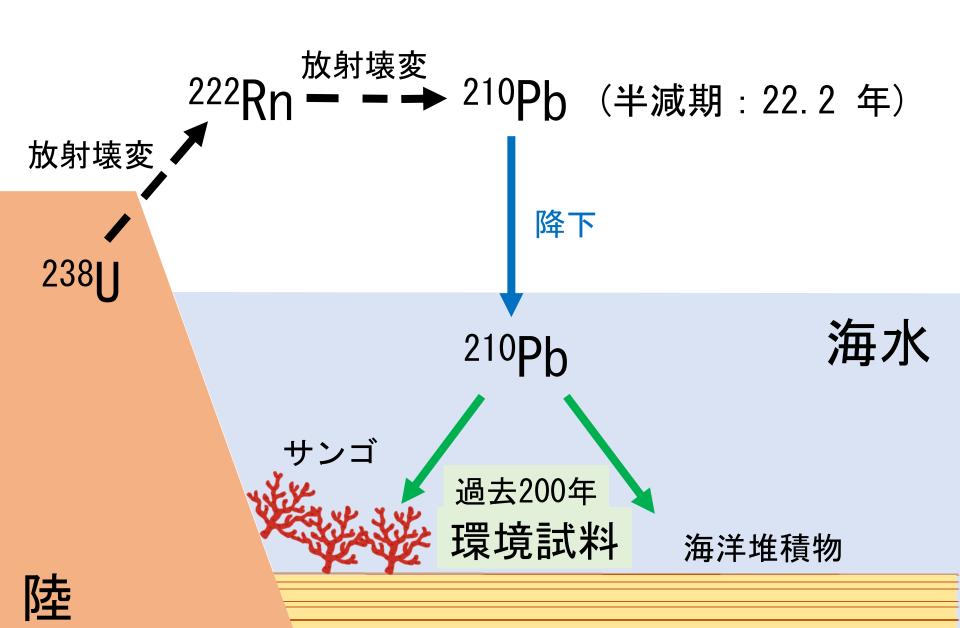
世界の人新世GSSP候補地

2023年の夏に、最終候補地はCrawford Lakeに決定 →別府湾の堆積物は副次的地層に

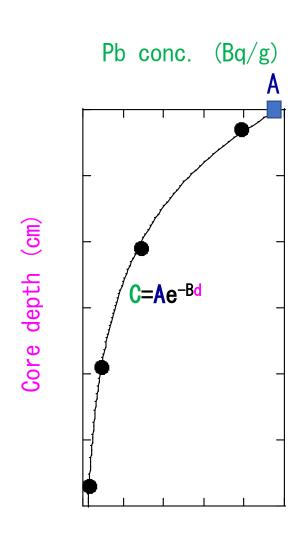
いずれにしても 人新世 の研究は今後ますます増加


Picture form Anthropocene working group

サンゴ骨格や堆積物を用いた人新世の研究


²³⁶U導入履歴をサンゴから復元した例

Nomura et al., JGR Oceans, 2016



²³⁸U(n, 2n)²³⁶Uや²³⁵U(n,γ)²³⁶Uによる 核反応でできるUがなぜ?

210Pb年代測定

210Pb年代測定

$$\begin{array}{c} \text{C=A}e^{-Bd} \\ \text{A=A}_0e^{-\lambda t} \\ \text{S=d/t=}\lambda/B \text{ (cm/y)} \\ \text{Endows a part of the content of the conte$$

A: 表層のPb-210濃度 (Bq/g)

C: Pb-210濃度 (Bq/g)

t: 時間 (y)

Ⅰ: 壊変定数(1/y)

d: コア深度(cm)

S: 成長速度 (cm/y)

*海洋への年間Pb-210降下量 (Bq/cm²/y) は一定とする

*Pb-210半減期 22.2年

サンゴ試料中の微量²¹⁰Pb測定

サンゴ試料中の²¹⁰Pb濃度:数mBq/g(約10⁻¹⁶g/g)

測定法

α線測定

γ線測定

ICP-MS

アジレント・テクノロジー 株式会社 提供

問題点

子孫核種²¹⁰Po(半減 期:138日)を使用 測定まで数か月 ~数年 測定に数週間

²¹⁰Pbのγ線が46 keV 検出効率が悪い

環境BGが大きい

環境BG

- ・コンプトン効果
- 宇宙放射線

分子イオンの妨害、 安定²⁰⁸Pbからのテーリ ング

検出効率が悪い

 $A = \lambda N$

A: 放射能(Bq)

N:核種の個数

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利

$$\lambda = \frac{\ln 2}{T_{1/2}}$$

T_{1/2}:半減期(秒)

λ: 壊変定数

ポイント:半減期が短いほど 壊変定数が大きい

 $A = \lambda N$

A: 放射能(Bq)

N:核種の個数

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利

$$\lambda = \frac{\ln 2}{T_{1/2}}$$

T_{1/2}:半減期(秒)

λ: 壊変定数

ポイント:半減期が短いほど 壊変定数が大きい

<mark>36CI</mark> 半減期30.5万年 β崩壊核種(E_β=0.7 MeV)

 $\lambda = 7.20 \times 10^{-14} (s^{-1})$

→1分間で1.39×10¹¹個あるうちの1個しか壊変しない(1dpm)

統計誤差1%で測定したい(10000カウント積算したい) 計数効率100%として10000分→1週間のβ線測定

 $A = \lambda N$

A: 放射能(Bq)

N:核種の個数

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利

$$\lambda = \frac{\ln 2}{T_{1/2}}$$

T_{1/2}:半減期(秒)

λ:壊変定数

ポイント:半減期が短いほど 壊変定数が大きい

<mark>36CI</mark> 半減期30.5万年 β崩壊核種(E_β=0.7 MeV)

 $\lambda = 7.20 \times 10^{-14} (s^{-1})$

→1分間で<u>1.39×10¹¹個</u>あるうちの1個しか壊変しない(1dpm)

<u>原子の数</u>そのものをカウントするならば検出効率が1%しかなくても1.39×10⁹の計数 現在の質量分析ならば数秒で10000の計数 20分くらいかけて10000の計数を得るのならばこの1/100000個で良い 18

極微量同位体の質量分析における問題

質量分析ならではの妨害がある (イオンエネルギー: ~10keV)

- ① Analyteと同じ質量数をもつ分子イオンの妨害
- ② Analyteと同じ質量数をもつ同重体の妨害
- ③ Analyteと隣接する質量のイオンのもつエネルギーに幅(ふらつき)があり電場・磁場の分析場を通り抜けるイオンの妨害
- →感度が低下(バックグラウンドが大きい) 単純に 放射線測定より圧倒的有利ともいえない

極微量同位体の質量分析における問題

質量分析ならではの妨害がある (イオンエネルギー: ~10keV)

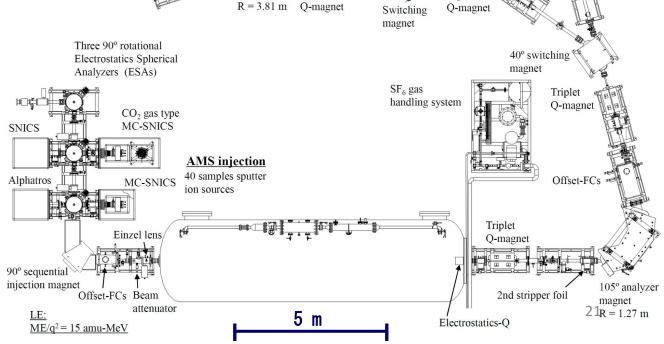
- ① Analyteと同じ質量数をもつ分子イオンの妨害
- ② Analyteと同じ質量数をもつ同重体の妨害
- ③ Analyteと隣接する質量のイオンのもつエネルギーに幅(ふらつき)があり電場・磁場の分析場を通り 抜けるイオンの妨害
- →Analyte(イオン)を~10MeV以上の高エネルギーに加速してこれら妨害を除去

放射線検出器のテクニックが利用可能 薄膜やガス相の通過可能、イオンと物質の相 互作用を利用しエネルギー測定が可能

ターゲット核種(イオン)を以下の 固有パラメータで分別

₩: 質量数

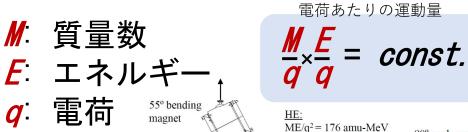
E: エネルギ・


22.5° ESA Triplet

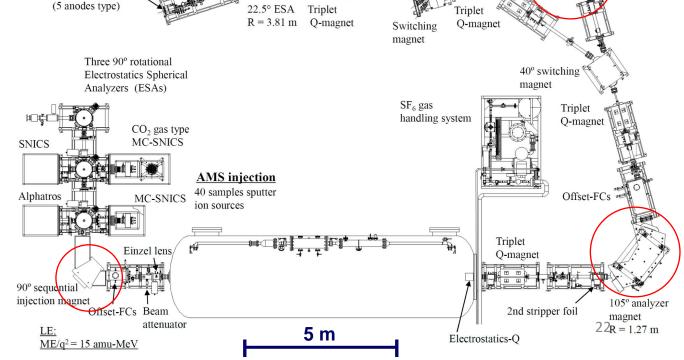
a: 電荷

55° bending $ME/q^2 = 176$ amu-MeV 90° analyzer magnet R = 1.27 mTriplet O-magnet Switching magnet 40° switching

(5 anodes type)


分析電磁石 静電分析器 タンデム加速器 電離箱とファラデー カップ

magnet


ターゲット核種(イオン)を以下の 固有パラメータで分別

90° analyzer magnet R = 1.27 m

分析電磁石

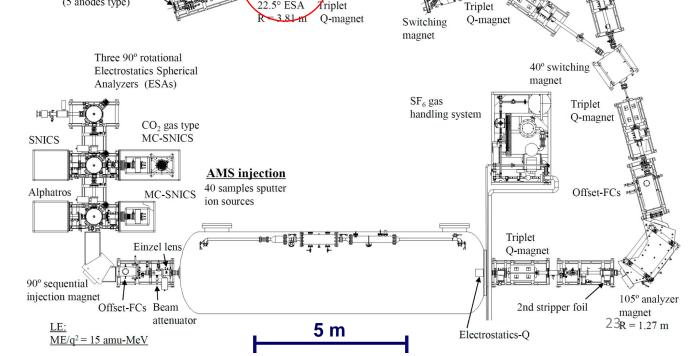
静電分析器 タンデム加速器 電離箱とファラデー カップ

ターゲット核種(イオン)を以下の 固有パラメータで分別

 $ME/q^2 = 176$ amu-MeV

90° analyzer magnet R = 1.27 m

電荷あたりのエネルギー ₩: 質量数 const. *E*: エネルギ **a**: 電荷 55° bending magnet


(5 anodes type)

分析電磁石

静電分析器

タンデム加速器

電離箱とファラデー カップ

ターゲット核種(イオン)を以下の 固有パラメータで分別

₩: 質量数

E: エネルギー

q: 電荷 55° bending magnet

22.5° ESA Triplet

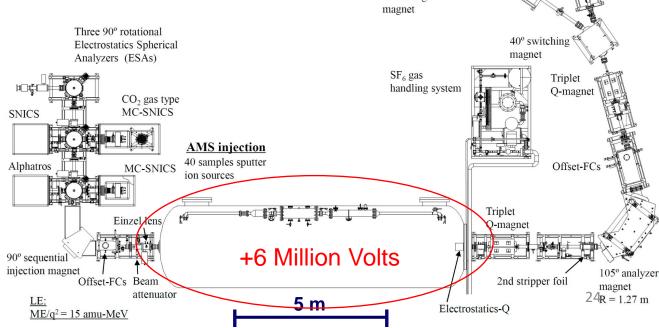
R = 3.81 m Q-magnet

- 200

Switching

Triplet Q-magnet

 $ME/q^2 = 176$ amu-MeV


90° analyzer magnet R = 1.27 m

(5 anodes type)

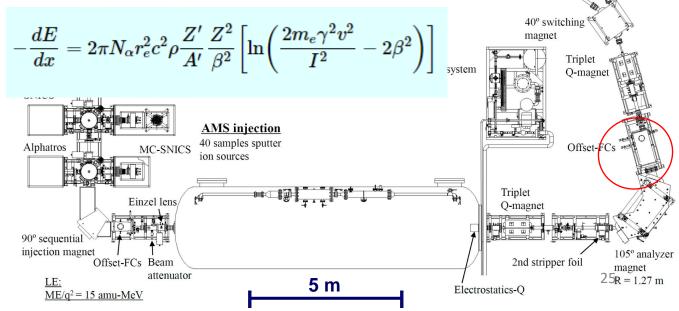
分析電磁石 静電分析器

タンデム加速器

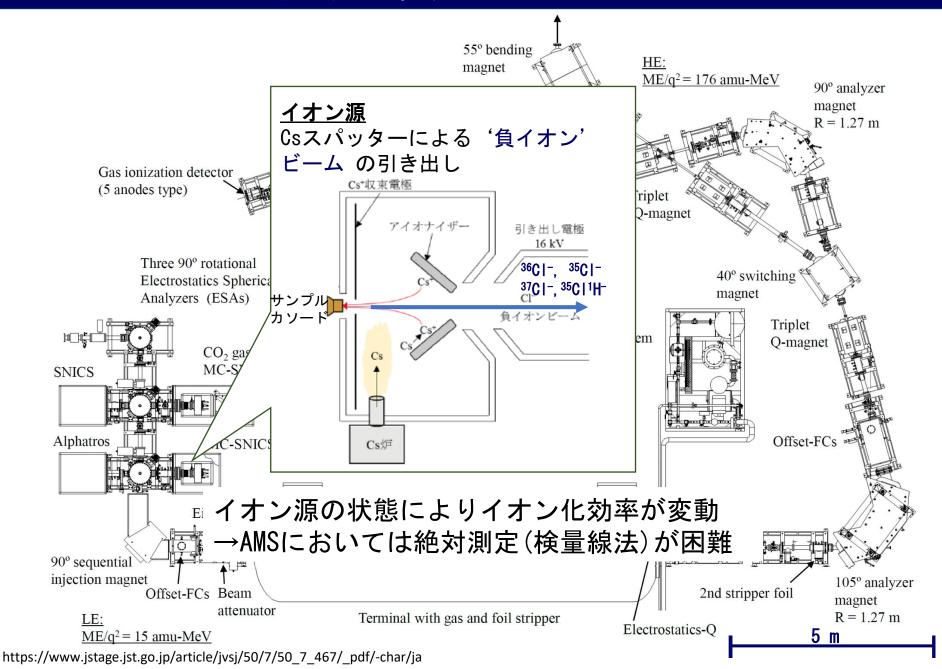
電離箱とファラデー カップ

ターゲット核種(イオン)を以下の 固有パラメータで分別

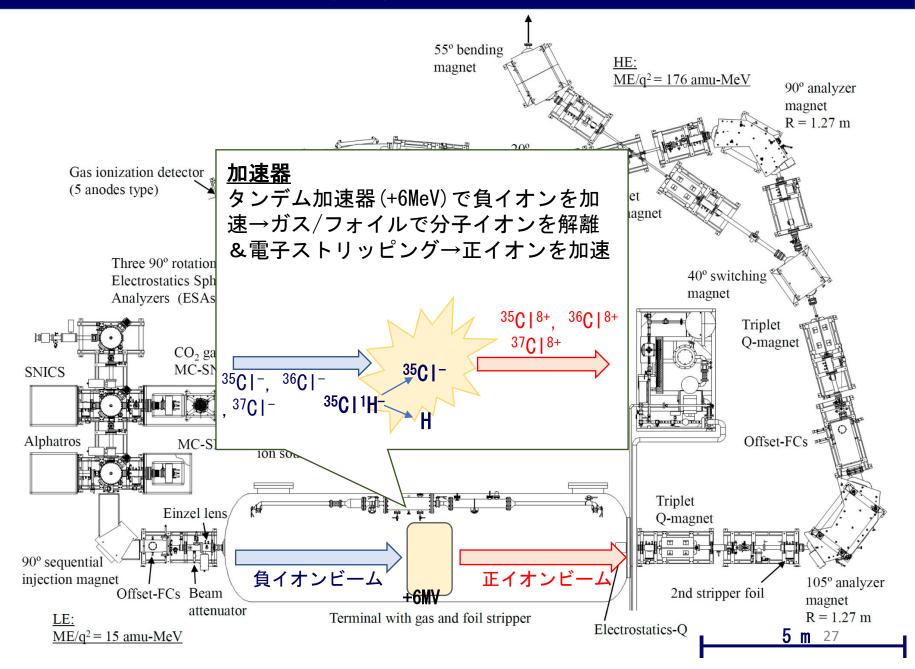
> 90° analyzer magnet R = 1.27 m

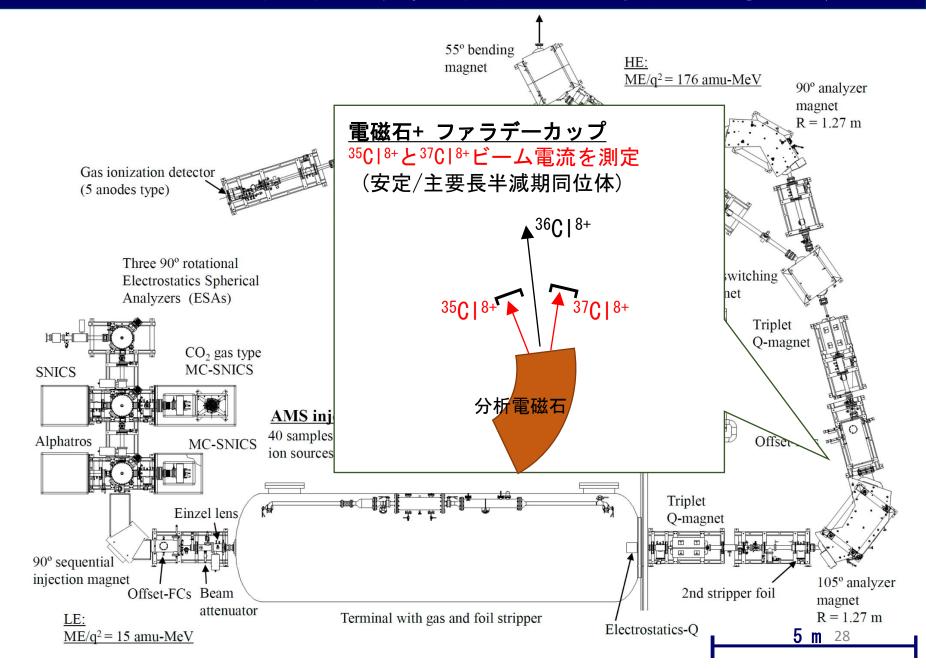

₩: 質量数

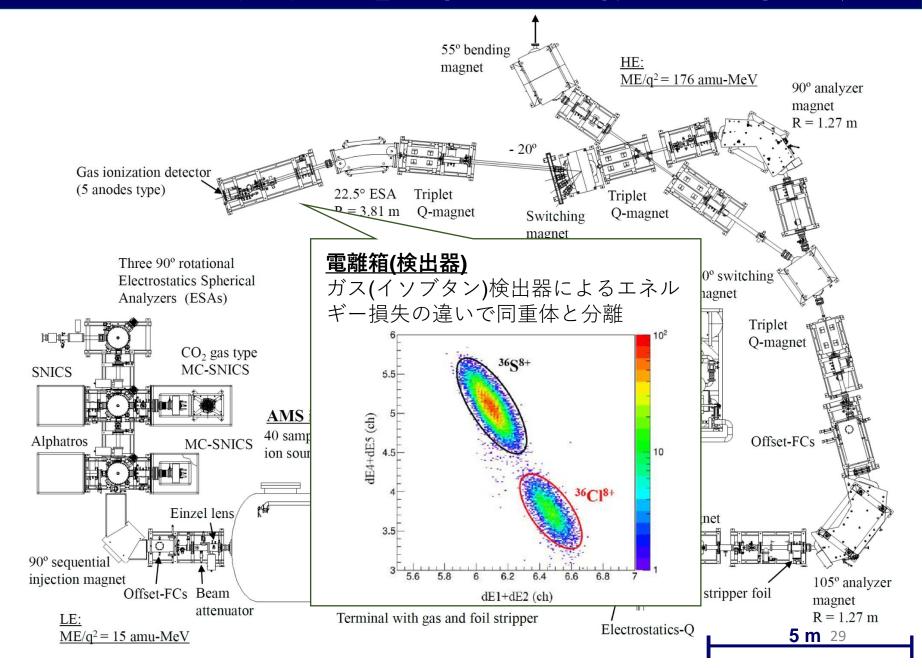
E: エネルギ-


a: 電荷 55° bending magnet

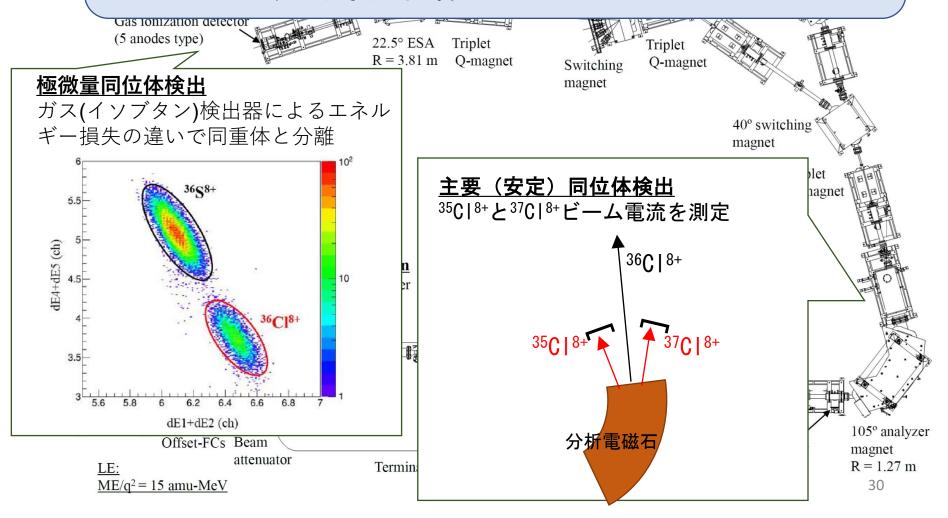
 $ME/g^2 = 176$ amu-MeV 22.5° ESA Triplet Triplet $R = 3.81 \, \text{m}$ Q-magnet O-magnet Switching magnet 40° switching magnet


分析雷磁石 静電分析器 タンデム加速器 電離箱とファラデー カップ


AMSによる36CI分析 -負イオンビームの取り出し-


AMSによる36CI分析 -加速器中での反応-

AMSによる36CI分析 -質量分別と主要同位体測定-


AMSによる36CI分析 -電離箱による微量同位体測定-

"超高感度"分析?

AMSによる分析の場合 稀な同位体(Rare isotope)とふんだんに存在する同位体(Abundant isotope)の同位体比が得られる

測定対象同位体比 10-15~10-11

 $A = \lambda N$

A: 放射能(Bq)

N:核種の個数

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利

$$\lambda = \frac{\ln 2}{T_{1/2}}$$

T_{1/2}:半減期(秒)

λ: 壊変定数

ポイント:半減期が短いほど 壊変定数が大きい

²¹⁰Pb 半減期22.2年 → 5 mBq測定したい場合は?

γ線測定 (45 keV) 分岐比 ~4%、検出効率 ~10%?

 \rightarrow 2 × 10⁻⁵ cps

統計誤差5%で測定したい(400 カウント積算したい)

 \rightarrow 400/(2 × 10⁻⁵)/86400 = 231 ∃

 $A = \lambda N$

A: 放射能(Bq)

N:核種の個数

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利 $\lambda = \frac{\ln 2}{T_{1/2}}$

T_{1/2}:半減期(秒)

λ:壊変定数

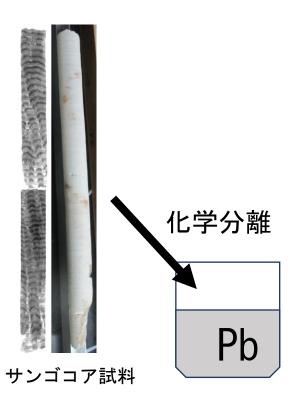
ポイント:半減期が短いほど 壊変定数が大きい

²¹⁰Pb 半減期22.2年 → 5 mBq測定したい場合は?

総原子数→ 5×10⁶ 個 統計誤差1%で測定したい(10000 カウント積算したい)

- → 検出効率が1%だったとしても5×10⁴の計数
- → 約20分で測定可能

加速器質量分析装置(AMS)による²¹⁰Pb測定


従来の測定法の問題点を解消できる可能性

- □ 210Pbの原子数を直接測定子孫核種の成長や放射平衡を待たなくて良い
- 妨害同重体分子イオンや主要安定同位体からの 妨害低下
- 数mBq/g (約10⁻¹⁶ g/g)の²¹⁰Pbを 試料量数gで高感度で測定可能
 - →測定条件の大半が未確立
 - →サンゴ(環境)試料の処理法が未確立

加速器質量分析装置(AMS)による²¹⁰Pb測定

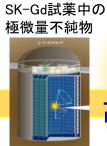
人新世の環境試料(特にサンゴ試料)の 年代測定のための²¹⁰Pb測定をAMSにて行う → さまざまな試料中の²¹⁰Pbに応用

I. サンゴ試料から の鉛の分離法の検討

Ⅱ. AMSのための 鉛化合物作製法の 検討

Ⅲ. AMSの 測定条件の検討

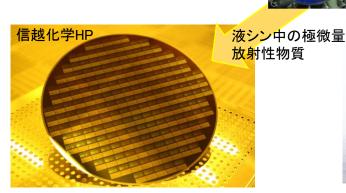
冬の壱岐島 サンゴコア採取



材料物質評価への新展開

全ての身の回りの物質に関して欠かせない品質管理 規制強化される一方で技術/コスト(人・金・時間)が追い付いていない現状を解決

医薬品中の有害金属

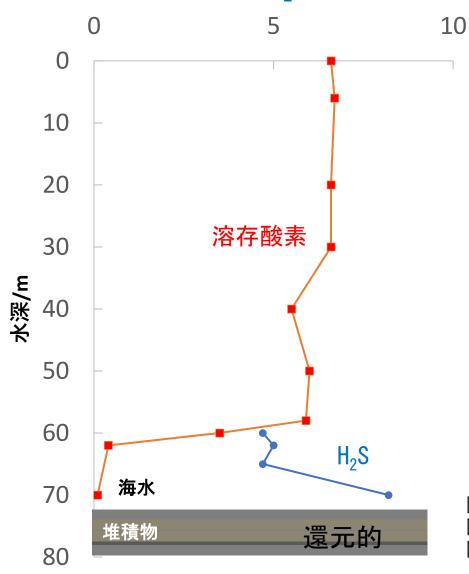

分解·溶解 化学分離·精製 高精度測定·定量

有機物中の極微量 金属・放射性不純物

実験器具中の微量金属

フォトレジスト中の放射性物質

容器中の有害金属・放射性物質



食品中の有害金属・放射性物質

分野に応じて10⁻¹²~10⁻⁶ g/gレベルの極微量不純物(安定/放射性元素)の定量が必須 難溶性/難分解性の高マトリクス原材料 難溶性/難分解性の高マトリクス<mark>製造品</mark>

GSSP有力候補地 別府湾·堆積物

溶存酸素、H₂S/mg・L⁻¹

- 極東アジアに位置 [1]
- 堆積速度が速い(時間分解能が良い)
- 乱されずに堆積 [2,3]
- キーマーカーが豊富 [4]地球環境に影響を与えたことを示す物質
- ・堆積物・底層が還元環境 [5]

```
[1] Kuwae et al. (2022); [2] Takahashi et al. (2020); [3] Kuwae et al. (2013); [4] Amano et al. (2011); [5] Shiozawa et al. (1976)
```

GSSPとなり得る試料とキーマーカー

Marker	minae	Novel materials		Geochemical markers									Biotic markers
Environment	Annual laminae	Plastics	Fly ash	δ ¹⁸ Ο	Deuterium ∨ dust	CO2&CH4	8 ¹³ C	NO3-&6 ¹⁵ N	S&ASO ₄ -	Heavy metals	Organic compounds	Radionuclides	Extinctions/Ne obiota
Anthropogenic ط <mark>ر کاری</mark> deposit		٧	٧				٧	٧		٧	٧	٧	٧
Marine anoxic basin deposits	٧	٧	٧	٧			٧	٧		٧	٧	٧	٧
Coral biochems &marine bivalve shells	٧	٧	?	٧			٧	٧		٧	٧	٧	
Estuarine &deltaic deposits	٧	٧	٧	٧			٧	٧		٧	٧	٧	٧
lake deposits	٧	٧	٧	٧			٧	٧		٧	٧	٧	٧
Peat & peatlands (mires)			٧		٧	٧	٧	٧	٧	٧	٧	٧	٧
lce	٧		?	٧	٧		٧	٧	٧	٧	٧	٧	
Speleothems	٧			٧					٧	٧	٧	٧	
Trees	٧			٧	٧		٧	٧	٧	٧		٧	

太平洋核実験場

1952 - Operation Ivy

1954 - Operation Castle

1958 - Operation Hardtack

最初の水爆実験(1952)

Year	Operation	Area	No. of Test	Yield (Mt)						
1946	Crossroads	Bikini	2	0.05						
1948	Sandstone	Eniwetok	3	0.1						
1952	lvy	Eniwetok	2	10.9						
1954	Castle	Eniwetok, Bikini	6	48.2						
1956	Redwing	Eniwetok	17	20.82						
1958	Hardtack I	Eniwetok, Bikini	35	35.6						
ANSCEAR (2000)										

2番目に大きい核出力 (1958)

最大核出力(1954)

イオン化効率に与える電子親和力の影響

周期\族	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H 水素 0.754						電	子親君	和力	(eV)								2 He ヘリウム -0.5
2	3 Li リチウム 0.618	4 Be ペリリウム -0.5											9 F ふっ素 3.401	10 Ne ネオン -1.2				
3	11 Na サリウム 0.547	12 Mg マグネシウム 一0.4		PIIミニウム けい素 りん 硫黄 塩素 ア										18 Ar アルゴン -1.0				
4	19 K カリウム 0.501	20 Ca カルシウム 0.024	21 Sc スカンジウム 0. 17 9	22 Ti チタン 0.0 7 5	23 V パナジウム 0.527	24 Cr 204 0.675	25 Mn マンガン -0.5	26 Fe 鉄 0.153	27 Co ⊐หม⊦ 0.662	28 Ni = ๒๖๖ ม 1.157	29 Cu 銅 1.23 5	30 Zn 亜鉛 -0.6	31 Ga ガリウム 0.301	32 Ge ゲルマニウム 1.232	33 As ひ素 0.804	34 Se セレン 2.020	35 Br 臭素 3.363	36 Kr タリプトン -1.0
5	37 Rb ルピジウム 0.48 5	38 Sr オロンチウム 0.052	39 Y イットリウム 0.311	40 Zr ジルコニウム 0.433	41 Nb ニオブ 0.917	42 Mo モリグデン 0. 747	43 Tc テクネチウム 0.55	44 Ru ルテニウム 1.046	45 Rh ロジウム 1.142	46 Pd パラジウム 0.562	47 Ag 銀 1.304	48 Cd がドミウム -0.7	49 In インジウム 0.383	50 Sn 錫(スズ) 1.112	51 Sb アンチモン 1.047	52 Te รมม 1 .970	53 I よう素 3.059	54 Xe キセン -0.8
6	55 Cs セシウム 0.471	56 Ba ภบรัน 0.144	※ 1	72 Hf ハフニウム 0.178	73 Ta ฐษฐม 0.328	74 W タングステン 0.816	75 Re レニウム 0.060	76 Os オズウム 1.077	77 Ir イリジウム 1.564	78 Pt 白金(プラチナ) 2.12 5	79 Au 金 2.308	80 Hg 水銀 -0.5	81 TI מלעפ 0.320	82 Pb 鉛 0.356	83 Bi ਦੁਕਵਕ 0.942	84 Po ボロニウム 1.40	85 At アスタチン 2.41 5	86 Rn ラドン -0.7
7	87 Fr วริงงงง	88 Ra ラジウム 0.10	※ 2	104 Rf ラザホージ ウム	105 Db ドブニウム	106 Sg シーボーギ ウム	107 Bh ボーリウム	108 Hs ハッシウム	109 Mt マルネリ ウム	110 Ds ダーム <i>ス</i> タ チウム	111 Rg レントゲニ ウム 1.565	112 Cn コペルニシ ウム	113 Nh ニホニウム 0.69	114 Fl フレロビウム	115 Mc モスコピウム 0.366	116 Lv リバモリウム 0.776	117 Ts テネシン 1.719	118 Og オガネノン 0.080
※ 1	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu			
ランタ ノイド 系	ランタン 0.557	セリウム 0.600	プラセオジム 0.109	ネオジム 0.097	プロメチウム 0.129	サマリウム 0.162	ユウロピウム 0.116	がにかん 0.212	テルビウム 0.131	ジスプロシウム 0.015	ホルミウム 0.338	エルピウム 0.312	かりかム 1.029	イツテルビ ウム -0.02	ルテチウム 0.238			
※2 アクチ ノイド	89 Ac アクチニウム	90 Th רטלע	91 Pa プロト アクチニウム	92 U ウラン	93 Np ネプツニウム	94 Pu ブルトニウム	95 Am アメリシウム	96 Cm キュリウム	97 Bk パークリウム	98 Cf カリホルニウム	99 Es アインスタイ ニウム	100 Fm フェルミウム	101 Md メンチレビ ウム	102 No ノーベリウム	103 Lr ローレンシ ウム			
系	0.35	0.607	0.55	0.314	0.48	-0.50	0.10	0.28	-1.72	-1.01	-0.30	0.35	0.98	-2.33	-0.31			

電子親和力の小さい(<0.5eV)元素は分子負イオンをつくらせる電子親和力の大きい元素でもイオン化効率は数%にとどまるイオン源の状態によりイオン化効率が変動→AMSにおいては絶対測定(検量線法)が困難