質量分析計による極微量放射性核種測定

筑波大学 数理物質系/放射線・アイソトープ地球システム研究センター 坂口 綾

自己紹介

坂口 綾 筑波大学 数理物質系/生命環境系 放射線・アイソトープ地球システム 研究センター

研究テーマ

環境中の天然・人工放射性核種を 利用した環境動態研究

世界の核汚染調査

自己紹介

坂口 綾 筑波大学 数理物質系/生命環境系 放射線・アイソトープ地球システム 研究センター

研究テーマ

環境中の天然・人工放射性核種を 利用した環境動態研究

世界の核汚染調査

実は・・・

山本 政儀先生 (金沢大LLRL、学位取得時の指導教員)

KAMIOKANDE-IIで地下水・超純水・ 空気中の放射性核種測定を担当して いた 学術変革 横串としての極微量放射性核種分析

難溶解性試料、高マトリクス試料中の極微量 放射性核種測定法確立(クリーン技術確立)

• KamLAND 東北大

* PENフィルムやBis-MSBに含まれるU, Th分析

・CANDLES 阪大・徳島大

* CaF₂の材料やCaF₂そのものに含まれるU, Th分析

·暗黒物質検出 横浜国立大

*液体シンチレータに含まれるU, Th分析

SK-Gd 東大 期間限定お仕事
 * 追加投入 硫酸Gdに含まれる²²⁶Ra分析

極微量²¹⁰Pbの分析法確立 -人新世紀年代測定法への応用-

地質時代区分

~5億2400万年	先カンフ	ブリア時代	Ċ	最終氷期
5億2400万年~ 2億5000万年	古生代			
2億5000万年~	中生代	三畳紀		
000071-+-		ジュラ紙	1	https://yumeraku.net/saiyo/2018/07/26/2030%E5%B9%B4%E3%81%AB%E6%B0%B7%E6%B2%B3%E6%9C%S
		白亜紀		F%E5%88%B0%E6%9D%A5%EF%BC%81%EF%BC%81%EF%BC%81%EF%BC%9F%EF%BC%9F%EF%BC%9F/
6600万年~ 258万年	新生代	第三紀		
258万年~ 1万1700年		第四紀	更新世	
1万1700年~			完新世	

A Direct layer (18) https://aomori-jomon.jp/essay/?p=9890

地球環境の変化

大気中C0, CH₄, N₂0濃度

絶滅速度

	絶滅速度(100年) 10000種当たり
過去	0.1~1 種
近年 (100 年間)	100種
	環境省

"人間"が地球に影響を及ぼし始めた →これまでの地質時代と大きく異なる

新しい地質時代区分—人新世

~5億2400万年	先カンフ	ブリア時代	Ċ	La State
5億2400万年~ 2億5000万年	古生代			
2億5000万年~	中生代	三畳紀		https://www.euronews.com/green/2021/09/24/who-air-pollution-is-worse- than-we-thought-but-there-s-hope-we-can-fix-it
000071-+		ジュラ紙	2	
		白亜紀		
6600万年~ 258万年	新生代	第三紀		
258万年~ 1万1700年		第四紀	更新世	https://iss1_ip/column/column_34/
1万1700年 ~???			完新世	いつまでナウマンゾウや縄文時代と一緒の時代区分なんだよう!?
???~			人新世	新たる時代区分の設定か 必要となっている (Steffen et al. 2015; Water et al., ⁸ 2018)

時代 定義の ための GSSP

Global Boundary Stratotype Section and Point

年代層序単元の区分である階の下限を定める境界模式層

世界の人新世GSSP候補地

10

日本の 別府湾・堆積物 が人新世GSSPの 有力候補地に!

Picture form Anthropocene working group

世界の人新世GSSP候補地

2023年の夏に、最終候補地はCrawford Lakeに決定 →別府湾の堆積物は副次的地層に いずれにしても 人新世 の研究は今後ますます増加 Picture form Anthropocene working group

サンゴ骨格や堆積物を用いた人新世の研究

²³⁶U導入履歴をサンゴから復元した例

Nomura et al., JGR Oceans, 2016

12

²¹⁰Pb年代測定

²¹⁰Pb年代測定

- Ⅰ: 壊変定数(1/y)
- d: コア深度(cm)
- <mark>S</mark>∶成長速度(cm/y)

*海洋への年間Pb-210降下量(Bq/cm²/y) は一定とする *Pb-210半減期 22.2年

サンゴ試料中の微量²¹⁰Pb測定

サンゴ試料中の²¹⁰Pb濃度:数mBq/g(約10⁻¹⁶g/g)

	α 線測定	γ線測定	ICP-MS
測定法			Tジレント・テクノロジー株式会社 提供
問題点	子孫核種 ²¹⁰ Po(半減 ^{期:138日)} を使用 測定まで数か月 ~数年 測定に数週間	²¹⁰ Pbの γ 線が46 keV 検出効率が悪い 環境BGが大きい ^{環境BG} ・コンプトン効果 ・宇宙放射線	分子イオンの妨害、 安定 ²⁰⁸ Pbからのテーリ ング 検出効率が悪い ¹⁵

 $A = \lambda N$

A: 放射能(Bq) N:核種の個数

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利

ポイント:半減期が短いほど 壊変定数が大きい

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利 ポイント:半減期が短いほど 壊変定数が大きい

<mark>³⁶CI</mark> 半減期30.5万年 β崩壊核種(E_β=0.7 MeV)

λ= 7.20 × 10⁻¹⁴ (s⁻¹) →1分間で1.39 × 10¹¹個あるうちの1個しか壊変しない(1dpm)

統計誤差1%で測定したい(10000カウント積算したい) 計数効率100%として10000分→1週間のβ線測定

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利 ポイント:半減期が短いほど 壊変定数が大きい

<mark>³⁶CI</mark> 半減期30.5万年 β崩壊核種(E_β=0.7 MeV)

 $\lambda = 7.20 \times 10^{-14} (s^{-1})$

→1分間で1.39×10¹¹個あるうちの1個しか壊変しない(1dpm)

<u>原子の数</u>そのものをカウントするならば検出効率が1%しかなくても1.39×10⁹の計数 現在の質量分析ならば数秒で10000の計数 20分くらいかけて10000の計数を得るのならばこの1/100000個で良い 18

極微量同位体の質量分析における問題

質量分析ならではの妨害がある (イオンエネルギー:~10keV)

 Analyteと同じ質量数をもつ分子イオンの妨害
 Analyteと同じ質量数をもつ同重体の妨害
 Analyteと隣接する質量のイオンのもつエネルギー に幅(ふらつき)があり電場・磁場の分析場を通り 抜けるイオンの妨害

→感度が低下(バックグラウンドが大きい) 単純に 放射線測定より圧倒的有利ともいえない

極微量同位体の質量分析における問題

質量分析ならではの妨害がある (イオンエネルギー:~10keV)

 Analyteと同じ質量数をもつ分子イオンの妨害
 Analyteと同じ質量数をもつ同重体の妨害
 Analyteと隣接する質量のイオンのもつエネルギー に幅(ふらつき)があり電場・磁場の分析場を通り 抜けるイオンの妨害

→Analyte(イオン)を~<u>10MeV以上の高エネルギー</u>に 加速してこれら妨害を除去

放射線検出器のテクニックが利用可能

薄膜やガス相の通過可能、イオンと物質の相 互作用を利用しエネルギー測定が可能

AMSによる³⁶CI分析 - 負イオンビームの取り出し-

https://www.jstage.jst.go.jp/article/jvsj/50/7/50_7_467/_pdf/-char/ja

AMSによる³⁶CI分析 -加速器中での反応-

AMSによる³⁶CI分析 - 質量分別と主要同位体測定-

AMSによる³⁶CI分析 - 電離箱による微量同位体測定-

A=λN A=λN A: 放射能(Bq) N:核種の個数 L:壊変定数

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利 ポイント:半減期が短いほど 壊変定数が大きい

²¹⁰Pb 半減期22.2年 → 5 mBq測定したい場合は?

γ線測定 (45 keV) 分岐比 ~4%、検出効率 ~10%?
 → 2×10⁻⁵ cps
 統計誤差5%で測定したい(400 カウント積算したい)
 → 400/(2×10⁻⁵)/86400 = 231日

A= λ N A: 放射能(Bq) N:核種の個数 A: 人= $\frac{ln2}{T_{1/2}}$ T_{1/2}:半減期(秒) λ :壊変定数

ポイント:壊変定数が大きいほど 同じN数でも放射線測定が有利 ポイント:半減期が短いほど 壊変定数が大きい

²¹⁰Pb 半減期22.2年 → 5 mBq測定したい場合は?

総原子数→ 5×10⁶ 個 統計誤差1%で測定したい(10000 カウント積算したい) → 検出効率が1%だったとしても5×10⁴ の計数 → 約20分で測定可能 加速器質量分析装置(AMS)による²¹⁰Pb測定

従来の測定法の問題点を解消できる可能性

- ²¹⁰Pbの原子数を直接測定
 子孫核種の成長や放射平衡を待たなくて良い
- ・妨害同重体分子イオンや主要安定同位体からの 妨害低下
- 数mBq/g (約10⁻¹⁶ g/g)の²¹⁰Pbを 試料量数gで高感度で測定可能

→測定条件の大半が未確立

→サンゴ(環境)試料の処理法が未確立

加速器質量分析装置(AMS)による²¹⁰Pb測定

人新世の環境試料(特にサンゴ試料)の 年代測定のための²¹⁰Pb測定をAMSにて行う → さまざまな試料中の²¹⁰Pbに応用

I. サンゴ試料から の鉛の分離法の検討

Ⅱ. AMSのための鉛化合物作製法の検討

Ⅲ. AMSの 測定条件の検討

サンゴ試料ってこんなのです 浦島太郎が乙姫からもらった サンゴは「宝石(深海)サンゴ」

材料物質評価への新展開

全ての身の回りの物質に関して欠かせない品質管理 規制強化される一方で技術/コスト(人・金・時間)が追い付いていない現状を解決

分野に応じて10⁻¹²~10⁻⁶ g/gレベルの極微量不純物(安定/放射性元素)の定量が必須 難溶性/難分解性の高マトリクス原材料 難溶性/難分解性の高マトリクス製造品

GSSP有力候補地 別府湾·堆積物

- ・極東アジアに位置 [1]
- ・
 堆積速度が速い _[2]
 (時間分解能が良い)
- 乱されずに堆積 [2,3]
- ・キーマーカーが豊富 [4]

地球環境に影響を与えたことを 示す物質

・堆積物・底層が還元環境 [5]

[1]Kuwae et al. (2022);[2]Takahashi et al. (2020); [3]Kuwae et al. (2013);[4] Amano et al. (2011); [5]Shiozawa et al. (1976) 38

GSSPとなり得る試料とキーマーカー

別府	Marker	minae	Novel materials		Geochemical markers									
	Environment	Annual la	Plastics	Fly ash	δ ¹⁸ Ο	Deuterium ∨ dust	CO ₂ &CH ₄	δ ¹³ C	NO ₃ -& & ¹⁵ N	S&∆SO₄ ²⁻	Heavy metals	Organic compounds	Radionuclides	Extinctions/Ne obiota
	Anthropogenic deposit		٧	v				v	v		v	v	v	v
	/弓 Marine anoxic basin deposits	v	v	v	v			v	v		v	v	v	v
	Coral biochems &marine bivalve shells	٧	٧	?	٧			٧	٧		v	v	٧	
	Estuarine &deltaic deposits	v	v	v	v			v	v		v	v	٧	v
	lake deposits	٧	٧	٧	٧			٧	٧		v	v	٧	v
	Peat & peatlands (mires)			v		v	v	v	v	v	v	v	٧	v
	lce	٧		?	٧	٧		٧	٧	٧	v	v	٧	
	Speleothems	٧			٧					٧	v	v	٧	
	Trees	٧			٧	v		v	٧	٧	v		٧	

太平洋核実験場

1952 - Operation Ivy

1954 - Operation Castle

1958 - Operation Hardtack

最初の水爆実験(1952)

					. /	
Year	Operation	Area	No. of Test	Yield (Mt)		
1946	Crossroads	Bikini	2	0.05		□ 早+核山力(10F4)
1948	Sandstone	Eniwetok	3	0.1	/ /	取入核出力(1954)
1952	lvy	Eniwetok	2	10.9	//	
1954	Castle	Eniwetok, Bikini	6	48.2		
1956	Redwing	Eniwetok	17	20.82		2番目に大きい核出力
1958	Hardtack I	Eniwetok, Bikini	35	35.6		(1958)
			ANSC	EAR (2000)	r	(1996)

https://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%A4%E3%83%93%E3%83%BC%E4%BD%9C%E6%88%A6#/media/%E3%83%95%E3%82%A4%E3%83%A4&E3%83%AB:lvyMike2.jpg https://ja.wikipedia.org/wiki/%E3%82%AD%E3%83%A3%E3%83%83%E3%83%AB%E4%BD%9C%E6%88%A6#/media/%E3%83%95%E3%82%A4%E3%83%AB:Castle_Romeo.jpg https://ja.wikipedia.org/wiki/%E3%83%85%E3%83%BC%E3%83%83%E3%83%83%E3%82%AF%E4%BD%9C%E6%88%A6#/media/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:HardtackOak.JPG イオン化効率に与える電子親和力の影響

周期入族	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 H ⊸v ≢																	2 He
1	0.754						電	子親君	和力	(eV)	1							-0.5
	211	4 Bo								. ,			БR	60	7 N	• 0	٥E	10 No
2	リチウム	4 DC ベリリウム											し ほう素	炭素	室素	酸素	ふっ素	10 116 ネオン
2	0.618	-0.5											0.279	1.262	-0.07	1.461	3.401	-1.2
	11 Na	12 Mg	12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18														18 Ar	
3	サトリウム	マグネシウム	マガネシウム アルミニウム けい素 りん 硫黄 塩素 アルゴ													アルゴン		
	0.547	-0.4	-0.4												0.746	2.077	3.612	-1.0
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
4	カリウム	カルシウム	スカンジウム	チタン	バナジウム	クロム	マンガン	鉄	コバルト	ニッケル	銅	亜鉛	ガリウム	ゲルマニウム	ひ素	セレン	旲素	クリプトン
	0.501	0.024	0.179	0.075	0.527	0.675	-0.5	0.153	0.662	1.157	1.235	-0.6	0.301	1.232	0.804	2.020	3.363	-1.0
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 T c	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
5	ルビジウム	オロンチウム	イットリウム	ジルコニウム	ニオブ	モリブデン	テクネチウム	ルテニウム	ロジウム	パラジウム	銀	カドミウム	インジウム	弱(スズ)	アンチモン	テルル	よつ素	キセノン
	0.485	0.052	0.311	0.433	0.917	0.747	0.55	1.046	1.142	0.562	1.304	-0.7	0.383	1.112	1.047	1.970	3.059	-0.8
	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
6	セシウム	7054	×1	ハフニウム	ระวุฒ	タングステン	レニウム	オスミウム	10054	日金(プラチナ)	金	水硍	2054	稻	ビスマス	ポロニウム	アスタチン	ラドン
	0.471	0.144		0.178	0.328	0.816	0.060	1.077	1.564	2.125	2.308	-0.5	0.320	0.356	0.942	1.40	2.415	-0.7
	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 M t	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
7	フランシウム	ラジウム	*2	ラザホージ ウム	ドブニウム	シーボーギ ウム	ボーリウム	ハッシウム	マイトネリ ウム	ダームスタ チウム	レントゲニ ウム	コペルニシ ウム	ニホニウム	フレロビウム	モスコビウム	リバモリウム	テネシン	ボネル
	0.486	0.10									1.565		0.69		0.366	0.776	1.719	0.080
					1	1						1	1					
% 1	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 E u	64 Gd	65 T b	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu			
ランタ	ランタン	セリウム	プラセオジム	ネオジム	プロメチウム	サマリウム	ユウロピウム	ガドリニウム	テルビウム	ジスプロシウム	ホルミウム	エルビウム	シリウム	イッテルビウム	ルテチウム			
ノ1F 系	0.557	0.600	0.109	0.097	0.129	0.162	0.116	0.212	0.131	0.015	0.338	0.312	1.029	-0.02	0.238			
*2	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr			
アクチ	アクチニウム	トリウム	プロト	ウラ ン	ネプツニウム	プルトニウム	アメリシウム	キュリウム	バークリウム	カリホルニウム	アインスタイ	フェルミウム	メンデレビ	ノーベリウム	ローレンシ			
ノイド 系	0.35	0.607	0.55	0.314	0.48	-0.50	0.10	0.28	-1.72	-1.01	-0.30	0.35	0.98	-2.33	-0.31			

電子親和力の小さい(<0.5eV)元素は分子負イオンをつくらせる 電子親和力の大きい元素でもイオン化効率は数%にとどまる イオン源の状態によりイオン化効率が変動 →AMSにおいては絶対測定(検量線法)が困難