Supernova

- The most energetic explosion in the universe
- Neutrinos play a key role and 99% of the energy emitted as neutrinos
 - ◆ Important to observe supernova neutrinos
- Neutrino emission lasts over 1min.
 - ◆ Important to calculate for a long term

Axion-like particles

- Beyond standard model particle introduced to solve the strong CP problem (Axion)
- Pseudo-scalar particles like an axion
 - Axion-like particles (ALPs)
- Effects of ALPs on supernovae
 - Enhance heating (Early phase)
 - Accelerate neutrino cooling (Late phase)

In this study

- To calculate supernovae with ALPs for a long term
- To predict neutrino events in the case that ALPs exist

Shock revival

Simulation

- Simulator: GR1D with ALP cooling
 - ◆ 1D
 - General relativity
 - Neutrino radiation hydro
 - ◆ Progenitor: 9.6 M_☉

 $---- g_{10} = 70$

Axion

- Axion mass: 10 MeV
- Coupling Constants
- \Box 7.0 × 10⁻⁹ GeV ~ 1.0 × 10⁻⁹ GeV

Results

Density vs Temperature

ALPs with larger coupling

cool more in supernovae

constants are made more and

Neutrino

Cumulative events 10kpc with Super-Kamiokande

- ALPs decrease the fraction of neutrino energy
- We can detect ALPs from long-term supernova neutrinos

Conclusion

- We simulated long-term supernova with axions.
- ALPs shift neutrino emission and may be detected by neutrino observation.