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Calcium-48
● One of five “stable” double magic nuclei (4He, 16O, 40Ca, 48Ca, 208Pb) 

● Calcium has many stable isotopes ranging from 40Ca to 48Ca.

2

In this presentation, 48Ca is regarded as stable because of its very long half-life.



Proton/neutron density distributions of 40Ca and 48Ca
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Figure 1 | Ab initio computations for atomic nuclei. a, Diagrammatic illustration of nuclear forces based on chiral effective field theory22,23, with nucleons
being shown as full lines and exchanged pions as dashed lines. The left column corresponds to nucleon–nucleon (NN) interactions and the right column
shows three-nucleon (NNN) diagrams. Rows show contributions from diagrams of leading order (LO), next-to-leading order (NLO), and so on; progress
milestones are indicated. b, Trend of realistic ab initio calculations for the nuclear A-body problem. In the early decades, the progress was approximately
linear in the mass number A because the computing power, which increased exponentially according to Moore’s law, was applied to exponentially
expensive numerical algorithms. In recent years, however, new-generation algorithms, which exhibit polynomial scaling in A, have greatly increased the
reach. c, Ab initio predictions (this work) for charge densities in 40Ca (black line) and 48Ca (red line) compared to experiment27 (shaded area). Inset:
difference between the computed charge densities of 40Ca and 48Ca (blue line) compared to experiment (shaded area).

theory22,23 that are rooted in quantum chromodynamics, the theory
of the strong interaction. The quest for nuclear forces of high fidelity
has now reached a critical stage (Fig. 1a). In this study we use the
recently developed next-to-next-to-leading order chiral interaction
NNLOsat (ref. 24), which is constrained by radii and binding
energies of selected nuclei up to mass number A≈25. It provides a
basis for accurate ab initio modelling of light and medium-heavy
nuclei. Combined with a significant progress in algorithmic and
computational developments in recent years25, the numerical cost
of solving the ab initio nuclear many-body problem has changed
from exponential to polynomial in the number of nucleons A,
with coupled-cluster theory being one of the main drivers25. The
present work pushes the frontier of accurate nuclear ab initio theory
all the way to 48Ca (Fig. 1b). Our NNLOsat predictions for the
electric charge densities ρch in 40Ca and 48Ca are shown in Fig. 1c
(see Methods for details). The agreement of theoretical charge
densities with experiment26, especially in the surface region, is most
encouraging. The difference between the charge densities of 40Ca
and 48Ca (shown in the inset of Fig. 1c) is even better reproduced
by theory, as systematic errors at short distances cancel out. The
striking similarity of the measured charge radii of 40Ca and 48Ca,
3.478(2) fm and 3.477(2) fm, respectively, has been a long-standing
challenge for microscopic nuclear structure models. Our results
for the charge radii are 3.49(3) fm for 40Ca and 3.48(3) fm for
48Ca; these are the first ab initio calculations to successfully
reproduce this observable in both nuclei. The distribution of the
electric charge in a nucleus profoundly impacts the electric dipole
polarizability. To compute this quantity, we have extended the
formalism of ref. 27 to accommodate three-nucleon forces. To
validate our model, we computed the dipole polarizabilities of 16O
and 40Ca, for which experimental data exist28. We find an excellent
agreement with experiment for 16O, αD=0.57(1) fm3 compared to

αD,exp = 0.58(1) fm3. Our result for 40Ca, αD = 2.11(4) fm3, is only
slightly below the experimental value αD,exp=2.23(3) fm3.

We now turn to our main objective and present our predictions
for the root mean square (r.m.s.) point-neutron radius (that is, the
radius of the neutron distribution) Rn, r.m.s. point-proton radius
Rp, neutron skin Rskin=Rn −Rp, and electric dipole polarizability in
48Ca. Root mean square point radii are related to the experimentally
measured (weak-) charge radii by corrections that account for the
finite size of the nucleon (see Methods for details). To estimate
systematic uncertainties on computed observables, in addition to
NNLOsat, we consider a family of chiral interactions29. Similar to
NNLOsat, these interactions consist of soft nucleon–nucleon and
non-local three-nucleon forces. Their three-nucleon forces were ad-
justed to the binding energy of 3H and the charge radius of 4He only,
and—within EFT uncertainties—they yield a realistic saturation
point of nuclear matter29, and reproduce two-neutron separation
energies of calcium isotopes4 (see Supplementary Table 2). A main
difference between these interactions and NNLOsat is that they
have not been constrained by experimental data on heavier nuclei,
and they include next-to-next-to-next-to-leading order nucleon–
nucleon contributions.

Figure 2 shows the predicted values of Rskin, Rn and αD as
functions of Rp. In all three panels of Fig. 2, the blue line represents
a linear fit to our ab initio results obtained with the set of chiral
forces considered. The blue bands provide an estimate of systematic
uncertainties (see Methods). They encompass the error bars on
the computed data points and are symmetric around the linear fit
(blue line). The charge radius of 48Ca is known precisely, and the
horizontal green line marks the corresponding Rp. The intersection
between this line and the blue band provides a range for these
observables (shown as vertical orange bands) consistent with our
set of interactions. Our prediction for the neutron skin in 48Ca
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Figure 2 | Predictions for observables related to the neutron distribution in 48Ca. Neutron skin Rskin (a), r.m.s. point-neutron radius Rn (b) and electric
dipole polarizability αD (c) plotted versus the r.m.s. point-proton radius Rp. The ab initio predictions with NNLOsat (red circles) and chiral interactions of
ref. 29 (squares) are compared to the DFT results with the energy density functionals SkM∗, SkP, SLy4, SV-min, UNEDF0 and UNEDF1 (ref. 20; diamonds).
This is a representative subset of DFT results; for other DFT predictions, the reader is referred to ref. 20. The theoretical error bars estimate uncertainties
from truncations of the employed method and model space (see Methods for details). The blue line represents a linear fit to the data. The blue band
encompasses all error bars and estimates systematic uncertainties. The horizontal green line marks the experimental value of Rp. Its intersection with the
blue line and the blue band yields the vertical orange line and orange band, respectively, giving the predicted range for the ordinate.
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Figure 3 | Weak-charge observables in 48Ca. a, Root mean square point-neutron radius Rn in 48Ca versus the weak-charge form factor FW(qc) at the CREX
momentum qc=0.778 fm−1 obtained in ab initio calculations with NNLOsat (red circle) and chiral interactions of ref. 29 (squares). The theoretical error
bars estimate uncertainties from truncations of the employed method and model space (see Methods for details). The width of the horizontal orange band
shows the predicted range for Rn and is taken from Fig. 2b. The width of the vertical orange band is taken from Supplementary Fig. 2 and shows the
predicted range for FW(qc). b, Weak-charge form factor FW(q) as a function of momentum transfer q with NNLOsat (red line) and DFT with the energy
density functional SV-min21 (diamonds). The orange horizontal band shows FW(qc). c, Charge density (blue line) and (negative of) weak-charge density
(red line). The weak-charge density extends well beyond ρch as it is strongly weighted by the neutron distribution. The weak charge of 48Ca, obtained by
integrating the weak-charge density is QW=−26.22 (for the weak charge of the proton and neutron see Methods).

is 0.12!Rskin ! 0.15 fm. Figure 2a shows two remarkable features.
First, the ab initio calculations yield neutron skins that are almost
independent of the employed interaction. This is due to the strong
correlation between the Rn and Rp in this nucleus (Fig. 2b). In
contrast, DFT models exhibit practically no correlation between
Rskin and Rp. Second, the ab initio calculations predict a significantly
smaller neutron skin than the DFT models. The predicted range
is also appreciably lower than the combined DFT estimate of
0.176(18) fm (ref. 20) and is well below the relativistic DFT value of
Rskin=0.22(2) fm (ref. 20). To shed light on the lower values of Rskin
predicted by ab initio theory, we computed the neutron separation
energy and the three-point binding energy difference in 48Ca (both
being indicators of the N =28 shell gap). Our results are consistent
with experiment and indicate the pronounced magicity of 48Ca
(Supplementary Table 2), whereas DFT results usually significantly
underestimate the N =28 shell gap30. The shortcoming of DFT for
48Ca is also reflected in Rp. Although many nuclear energy density
functionals are constrained to the Rp of 48Ca (refs 18,30), the results
of DFT models shown in Fig. 2a overestimate this quantity.

For Rn (Fig. 2b) we find 3.47!Rn ! 3.60 fm. Most of the DFT
results for Rn are outside this range, but fall within the blue
band. Comparing Fig. 2a,b suggests that a measurement of a
small neutron skin in 48Ca would provide a critical test for ab
initio models. For the electric dipole polarizability (Fig. 2c) our
prediction 2.19!αD!2.60 fm3 is consistent with the DFT value
of 2.306(89) fm3 (ref. 20). Again, most of the DFT results fall
within the ab initio uncertainty band. The result for αD will be
tested by anticipated experimental data from the Darmstadt–Osaka
collaboration13,14. The excellent correlation between Rp, Rn and αD
seen in Fig. 2b,c demonstrates the usefulness of Rn and αD as probes
of the neutron density.

The weak-charge radiusRW is another quantity that characterizes
the size of the nucleus. The CREX experiment will measure the
parity-violating asymmetry Apv in electron scattering on 48Ca
at the momentum transfer qc = 0.778 fm−1. This observable is
proportional to the ratio of the weak-charge and electromagnetic
charge form factors FW(qc)/Fch(qc) (ref. 12). Making some
assumptions about the weak-charge form factor, one can deduce RW
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FIG. 3. (a) Extracted ρn and ρp of 48Ca compared with theoretical
predictions. “DD-MEb” (green dash-dotted) and “SAMi-J28” (black
dotted) are from a relativistic and a Skyrme EDF parameterizations,
respectively, while “NNLOsat” (blue short-dash) and “∆NNLO” (ma-
genta long-dash) are the predictions by the ab initio CC method. (b)
Density deviation (4πr2(ρcal−ρexp)) of theories (ρcal) presented in the
upper panel (a) from our work (ρexp).

perimental results: the ab initio CC method with NNLOsat and
∆NNLO interactions [20, 22], as well as, a relativistic and a
Skyrme EDF parameterization (DD-MEb, SAMi-J28) of the
Ref. [40]. ∆NNLO is the chiral EFT interaction recently
proposed by explicitly including ∆-isobar [22]. NNLOsat and
DD-MEb give reasonable rp values while ∆NNLO and SAMi-
J28 predict larger rp and rn. However, for the skin thickness of
48Ca, all the predictions give consistent values with our result
considering the error.

Figure 3 compares the experimentally-determined density
distributions in 48Ca (red solid and hatched lines) with the
predictions by NNLOsat (blue short-dash), ∆NNLO (magenta
long-dash), DD-MEb (green dash-dotted), and SAMi-J28
(black dotted). The lower panel (b) of Fig. 3 shows the de-
viations of each prediction from our work multiplied by 4πr2

(∆ = 4πr2(ρcal − ρexp)). For clarity, ρn and ∆n are shifted
by +0.02 fm−3 and +1.0 fm−1, respectively. The NNLOsat

and DD-MEb predictions surprisingly agree with our result.
∆NNLO and SAMi-J28 predict large diffusenesses of ρp and
ρn. Consequently, they give larger rp and rn, compared to our
work. It is thus demonstrated that comparison with the ex-
perimentally obtained ρp and ρn enables the assessment of the
theoretical predictions which is not possible only with the neu-
tron skin thickness. This is an advantage in the proton elastic

scattering method over other methods that determine only the
radii or skin thicknesses.

The obtained values of ∆rnp in 40,48Ca with the experimen-
tal errors are −0.010+0.022

−0.024
fm and 0.168+0.025

−0.028
fm, respectively.

The 40Ca result is consistent with almost all the theoretical
calculations, which predict a small proton skin in 40Ca. The
small proton skin is a result of the repulsive Coulomb force
that pushes protons outwards. The result of ∆rnp in 48Ca is
consistent in the range of 0.14–0.20 fm, which was recently
obtained by interpreting the dipole polarizability (DP) of 48Ca
[26]. However, the value of ∆rnp = 0.249(23) fm reported
by the dispersive optical model (DOM) analysis [41] differs
from our work and the DP result. The left panel of Fig. 4
plots the correlation between ∆rnp in 48Ca and the slope pa-
rameter L of the symmetry energy predicted by the ab initio

and EDF models, while the right panel compares the ∆rnp val-
ues of 48Ca and 208Pb predicted by the relativistic and Skyrme
EDF models. Black squares, green triangles, and magenta cir-
cles represent the predictions of the ab initio method, the rela-
tivistic EDF models (NL3 [42], DD-ME2 [43] DD-MEδ [44],
DD-PC1 [45], FSU [46], FSU2 [47] IUFSU [48]) and Skyrme
EDF models (SkM* [49], Sk255, Sk272 [50], SeaLL1 [51],
UNEDF0 [52]), respectively. Open triangles and circles are
sets of the DD-ME and SAMi-J families in Ref. [40], respec-
tively. Open squares are the ab initio results by newly devel-
oped NNLOsat and ∆NNLO interactions. The blue rectangle
represents the region estimated from several chiral EFT inter-
actions by G. Hagen et al. in Ref. [25]. The red hatched area
shows the result of our work while the arrows are the ranges
by DP and DOM analyses. Compared to the recent EDF the-
ories, ab initio theories predict a slightly smaller neutron skin
thickness. Our result for 48Ca implies that L is in the range
of 20–70 MeV. The right panel of Fig. 4 plots the correlation
between the 48Ca and 208Pb skin thicknesses. A difference be-
tween the results from the proton elastic scattering and from
the dipole polarizability is noticeable. The arrow denotes the
PREX result of 208Pb [15].

In summary, we performed a direct determination of the
neutron density distributions and the skin thicknesses of
40,48Ca from proton elastic scattering at 295 MeV. The ob-
tained value of ∆rnp = 0.168+0.025

−0.028 fm for 48Ca is consistent
with the DP analysis, while the DOM analysis provides a large
skin thickness. The recent ab initio and EDF predictions give
consistent values of ∆rnp with this work. In particular, the cal-
culations of the ab initio CC model using the NNLOsat inter-
action and the DD-MEb model provide density distributions
that are consistent with our result.

We would like to express our gratitude to the RCNP ac-
celerator group for providing the high-quality beam. This
work was in part supported by JSPS KAKENHI Grant Num-
ber 15H05451, the U.S. Department of Energy, Office of Sci-
ence, Office of Nuclear Physics under Award Number de-
sc0018223 (SciDAC-4 NUCLEI), and the Field Work Propos-
als ERKBP57and ERKBP72 at Oak Ridge National Labora-
tory(ORNL). Computer time was provided by the Innovative
and Novel Computational Impact on Theory and Experiment
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FIG. 2. Extracted ρn with error-envelopes of 40,48Ca (red hatched
and blue cross-hatched) and ρp derived from ρch (black dash-dotted).
Upper panels are the density distribution (ρ(r)), and the lower panels
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The spin-orbit contribution FSO is mainly attributed to the
nucleons in an open l shell. Although its contribution to the
entire proton density is quite small and neglected in many
cases, it has a non-negligible effect in the determination of
∆rnp. If (2 j+ 1) neutrons are filled in the j = l+ 1/2 sub-shell
and the proton shell is closed like 48Ca, FSO can be approxi-
mated as

FSO(q) ≈
l(2 j + 1)(Gn

E(q2) − 2Gn
M(q2))

4m2
F

{

∂(rρl
n(r))

r2∂r

}

,(2)

where Gn
M is the single-neutron magnetic form factor, ρl

n(r) is
the density of each neutron in the j = l + 1/2 subshell, and
m is the nucleon mass. (The relativistic description of FSO is
presented in Refs. [37, 38].) The spin-orbit contribution is
sizable in 48Ca due to the eight neutrons in the f7/2 subshell.
The increase of rp in 48Ca due to the FSO term is evaluated
to be ∼0.02 fm [38, 39], which is compatible with the typical
uncertainty of ∆rnp [11]. Hence, the spin-orbit contribution
should be included to determine ρp in 48Ca. The FSO contri-
bution in 40Ca can be neglected because the nucleons in the
LS -closed shells do not contribute to the FSO term, as shown
in Ref. [39] for the non-relativistic limit.

The extraction of ρn in 40,48Ca was carried out by a χ2 fit-
ting to the proton elastic scattering data with ρp determined by
solving Eqs. (1) and (2) iteratively. ρn is modeled with a sum-
of-Gaussian (SOG) function with 11 free parameters. There
is no a priori assumption on the form factor and the extracted
density distributions are independent of specific nuclear struc-
ture models. ρp is derived by applying ρn determined from the
proton scattering data to the second and third terms in Eq. (1)
and the ρl

n term in Eq. (2). The (2 j + 1)ρl
n is approximated

with ρn − ρp. The error of ρp is not considered in this fitting

TABLE I. Table of the rms radii and the skin thicknesses. rch and rp

used in this work, and the extracted rn and ∆rnp in 40,48Ca are listed.
δexp and δexp+mdl are the two types of errors of rn and ∆rnp due to the
experimental errors only and the errors including model uncertain-
ties, respectively. For 48Ca, some EDF and ab initio predictions are
compared. All values are in fm.

rch rp rn ∆rnp δexp δexp+mdl

40Ca This work 3.480 3.385 3.375 −0.010 +0.022
−0.023

+0.049
−0.048

48Ca This work 3.460 3.387 3.555 0.168 +0.025
−0.028

+0.052
−0.055

DD-MEb - 3.39 3.57 0.18 - -
SAMi-J28 - 3.44 3.60 0.16 - -
NNLOsat - 3.41 3.54 0.13 - -
∆NNLO - 3.47 3.62 0.15 - -

procedure since it is much smaller than that of ρn. The χ2 fit-
ting procedure started with initial values of ρn = (N/Z)ρp and
FSO = 0 and continued until the self-consistent solution was
obtained.

While the blue solid lines in Fig. 1 represent the predic-
tions by the original MH model with Dirac-Hartree (DH) nu-
cleon densities [35], the red solid lines are the best-fit results
with the reduced χ2 minima 4.6 and 4.0 for 40,48Ca, respec-
tively. Figure 2 shows the extracted ρn in 40,48Ca (red solid)
together with ρp used in the search after the iteration (black
dash-dotted). The upper panels in Fig. 2 show the density
distributions, whereas the lower panels are those multiplied
by the phase space factor 4πr2. The red hatched areas show
the standard error envelopes due to the experimental statistical
and systematic errors only. The blue cross-hatched areas are
shown to visualize the maximum uncertainty of the present
method as well as the experimental errors. The uncertainty is
attributed to any effect that makes the reduced χ2 larger than
unity and is evaluated by determining the density distributions
for the same data set but with artificially increased errors so
that the reduced χ2 becomes unity. The blue cross-hatched
areas are comparable to the red hatched areas. The results
show that the present method is well established for the accu-
rate determination of density distributions. More details of the
analysis method are reported in Refs. [11, 30]. In 40Ca, ρn has
almost the same shape as ρp. On the other hand, ρn in 48Ca is
clearly enhanced over ρp and exhibits the characteristic nose
structure around 3 fm, as shown in the top-right panel of Fig.
2. This structure is attributed to the radial distribution of the
1 f7/2 orbit in which the excess eight neutrons are filled.

As listed in Table I, the neutron rms radii of 40,48Ca result
in values of 3.375+0.022

−0.023 fm and 3.555+0.025
−0.028 fm, respectively.

The errors δexp in Table I correspond to the experimental error
envelopes (red hatched) in Fig. 2. If error envelopes which
include the model ambiguities (blue cross-hatched) are con-
sidered, the rn values of 40,48Ca become 3.375+0.049

−0.048 fm and
3.555+0.052

−0.055
fm, respectively. The rp values of 40,48Ca are 3.385

fm and 3.387 fm, respectively. If FSO in Eq. (1) is not consid-
ered for 48Ca, the rp value becomes 3.371 fm. Table I lists the
theoretical predictions of rp and rn of 48Ca along with the ex-

J. Zenihiro et al., arXiv:1810.11796

ab initio calculation proton scattering



Nuclear charge radius

● Usually, for isotopes with the same atomic number (Z),  

the rms charge radius  is a monotonically increasing function of N. 

● However, this is not case for Ca isotopes. 

Rch = ⟨r2
ch⟩

Rch(40Ca) ≈ Rch(48Ca)
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290 W. Nörtershäuser and I. D. Moore

Fig. 15 The trend of charge radii at the neutron shell closures N = 28, 82, and 126, represented
by the change in the ms charge radius δ

〈
r2c

〉
as a function of neutron number

The oes is a particular and almost universal property of radii, which is expressed
by a systematic difference of the radii of odd-N nuclei with respect to their even-
N neighbors. It is characterized by the one-neutron (k = 1) three-point difference
∆

(3)
1n , whereas two-neutron (k = 2) differences ∆

(3)
2n are better suited to quantify and

compare the magnitude of the kink at a shell closure between several isotopic chains
since it removes the interfering effect of the oes.

Kinks at the shell closures were first discussed in the cesium (Thibault et al.
1981a) and barium isotopes (Mueller et al. 1983), where deviations from a
smooth rise were explained by changes in deformation. A multitude of subsequent
experimental studies revealed that these kinks are a universal feature as they are
observed at all neutron shell closures corresponding to magic neutron numbers
N ! 28, as shown in Fig. 15 for the cases N = 28, 82, and 126 and in Fig. 17

W. Nörtershäuser and I. D. Moore, 
“Nuclear Charge Radii”, 
in “Handbook of Nuclear Physics”



Calculation with Skyrme models

●  is reproduced in some models. 
● The “arc behavior” between A=40 and 48 cannot be explained. 

Rch(40Ca) ≈ Rch(48Ca)

5
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FIG. 1. Difference of root-mean-square charge radii between ASn and 132Sn, RSn
ch (A) − RSn

ch (132), as a function of A calculated by using
nonrelativistic EDFs. For comparison, experimental data [3,41] are also plotted.

effect of nucleons,

R2
ch = R2

p + r2
Ep + N

Z
r2

En + 〈r2〉SOp + N
Z

〈r2〉SOn, (2)

where rEp = 0.8409 fm is the single proton radius and r2
En =

−0.1161 fm2 is the single neutron mean-square radius [39].
The spin-orbit contributions 〈r2〉SOp and 〈r2〉SOn obtained in
Ref. [40] are calculated with the nucleon magnetic moments
κp = 1.793 and κn = −1.913 [39]. The importance of the
spin-orbit contribution will be discussed in the Appendix.

III. CALCULATED RESULTS

In this section, the “kink” behaviors of Sn and Pb isotopes
will be presented. The detailed mechanism will be discussed
by using Sn isotopes since 132Sn or its neighbor nuclei are not
used for the fitting criteria of the EDFs, and thus, it is expected
that the results may reflect properties of the EDFs better. Then,
the effects of some parameters of the nuclear equation of state
on the kink properties will also be discussed, introducing the
symmetry energy J , the nuclear incompressibility K∞, and the
effective mass m∗. Dependences of the pairing strength and
interaction on the kink behavior will also be discussed. At last,
results of Ca isotopes will be presented.

A. Mass-number A dependence of charge radii
in Sn and Pb isotopes

The mass-number A dependence of the difference between
the root-mean-square charge radius of ASn and that of 132Sn,
RSn

ch (A) − RSn
ch (132), calculated in nonrelativistic (SHF) and

relativistic (RMF and RHF) EDFs are shown in Figs. 1 and
2, respectively. For comparison, experimental data [3,41] are
also plotted. Results for Pb isotopes, RPb

ch (A) − RPb
ch (208), are

shown in Figs. 3 and 4 as well.
It can be seen that most EDFs reproduce well the A depen-

dence of Rch of stable nuclei of Sn isotopes (62 ! N ! 74)
except UNEDF2, PKA1, and DD-LZ1. In Figs. 3 and 4, most
EDFs reproduce well the A dependence of Pb isotopes be-
low the magic number N = 126, although the UNEDF series
underestimate RPb

ch (A) − RPb
ch (208) slightly, and the DD-LZ1

EDF overestimates it slightly. Behavior above the magic num-
bers is the main topic in this paper, and will be presented
later.

B. Sn isotopes

1. Systematic behavior

Hereinafter, we focus only on the kink behavior. To discuss
the size of kink quantitatively, we define the indicator of kink
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FIG. 33. Same as Fig. 1, but for Ca isotopes. Experimental data except 40Ca are taken from Refs. [55,56], instead of Ref. [3].

the opposite behavior, a negative value for the kink indicator.
In order to reproduce the kink behavior for the Sn isotopes,
the occupation probability of the 1h9/2 orbital should be
large enough. On the other hand, if the occupation proba-
bility of the 3p3/2 orbital is large, the antikink may appear.
In the case of Pb isotopes, a larger occupation probabil-
ity of the 1i11/2 orbital gives a larger kink indicator at the
N = 126 shell gap. To make such occupancy, the spin-orbit

TABLE IX. Same as Table II, but of Ca together with !RCa
ch (48)

and !RCa
ch (50).

EDF !RCa
ch (48) !RCa

ch (50) !2RCa
ch

UNEDF1 +10.272 +15.999 +5.727
UNEDF2 +9.611 +16.829 +7.218
UNEDF0 +5.814 +13.268 +7.454
SAMi +11.096 +21.330 +10.234
HFB9 +5.729 +17.407 +11.678
SLy5 +6.153 +18.080 +11.927
SGII +6.334 +18.378 +12.044
SLy4 +5.421 +17.856 +12.435
SAMi-noT +7.702 +20.374 +12.672
SKMs +3.182 +15.861 +12.679
SAMi-T +6.976 +19.841 +12.865

Expt. −17.8 +41.5 +59.3

mean-field must not be too strong. Note that the averaged
value of the single-particle energy for the spin-orbit doublet
also affects the occupation probability.

Analyzing the RHF calculation, the tensor interaction,
which contributes to the spin-orbit mean-field potential, is
concluded as an essential ingredient to produce such proper
occupations of the single-particle states and to reproduce
well the kink behavior. Compared with the tensor effect of
RHF, the effect of the Skyrme tensor interaction in SAMi-T
EDF is found to be tiny. The different strengths between

TABLE X. Same as Table IX, but by using relativistic EDFs.

EDF !RCa
ch (48) !RCa

ch (50) !2RCa
ch

DD-PC1 +3.671 +16.293 +12.622
PKDD +1.674 +19.694 +18.020
PKO2 +2.670 +24.965 +22.295
DD-ME2 (Surface) −0.019 +24.576 +24.595
PKO1* −2.174 +23.201 +25.375
PKO1 −0.956 +25.284 +26.240
DD-ME2 (TMR) −1.631 +25.863 +27.494
PKO3 −0.550 +27.110 +27.660
DD-LZ1 −10.279 +31.533 +41.812
PKA1 −15.149 +29.323 +44.472

Expt. −17.8 +41.5 +59.3
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Experimental determination of charge radius
● Elastic electron scattering 
▷  is determined from the form factor  

● Muonic atom 
▷ Transition energies are largely affected by the finite size of the nucleus. 

● Optical isotope shift 
▷ Transition frequencies is sensitive to .  The isotopic change of charge 

radii  can be evaluated.

ρch(r) F(q)

⟨r2
ch⟩

δ⟨r2
ch⟩

A,A′ = ⟨r2
ch⟩

A′ − ⟨r2
ch⟩

A

6

G. Fricke and K. Heilig, “Nuclear Charge Radii”  
W. Nörtershäuser and I. D. Moore, 
“Nuclear Charge Radii” in “Handbook of Nuclear Physics”



Muon wave functions in muonic atoms
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Finite nuclear size effect on energy levels
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Fig. 5 Nuclear potential as a function of the distance from the center of the nucleus r for a point-like nucleus
(solid line) and for a nucleus approximated by a homogeneously charged sphere of radius r0 (dashed line)

In atoms where the muon is bound to a highly deformed nucleus, the energy of several of
the muonic transitions is of the same order as the excitation energy of the nucleus to states
with nonzero spin. Due to the I J -coupling, this leads to an admixture of ground and excited
hyperfine states and a more complicated structure of the muonic energy levels. The effect is
called dynamic E2 interaction and is responsible for the presence of the hyperfine splitting
in even-even nuclei [34–36].

A schematic of the finite size, fine and hyperfine splitting is shown in Fig. 6. Other
corrections to the muonic levels are the vacuum polarization, the Lamb shift, the nuclear
polarization, the electron screening, and the anomalous magnetic moment. More details
about the theory of muonic atoms can be found in, e.g., [16,19,36–41].

3.3 Extraction of charge radii

Profiting from the high sensitivity of the low-lying muonic transitions to the properties of
the nuclear charge distribution, the charge radii of almost all stable elements have been
determined employing muonic atom spectroscopy. In order to do so, the energy of the muonic
levels is calculated accounting for all the relevant effects and given as a function of the
charge distribution parameters. The parameters of the charge distribution can subsequently
be extracted when the experimentally observed transitions are matched to the predicted
function. However, typically it is the root mean square radius which is reported rather than

the charge distribution parameters. The r.m.s. radius is given as rC =
√〈

r2
〉
, where

〈
r2〉 is

the second radial moment defined as [19]

〈
r2〉 = 1

Ze

∫
d3rρ(r) r2 . (10)

The most difficult component that needs to be treated in the theoretical analysis and in
the end limits, the uncertainty on the charge radius extraction is the nuclear polarization
correction. This effect emerges due to the electromagnetic interaction between the muon and
the nucleus exciting the system into virtual states. The effect results in a shift of the muon
binding energies which for the 1s state in 208Pb is 6 keV [42]. Due to inadequate knowledge
of the nuclear excited states, the uncertainty of the calculation of the nuclear polarization

123
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Fig. 6 Schematic (not to scale) of the muonic energy levels for a nucleus with spin I = 3
2 in the ground

state showing the effect of the finite nuclear size, fine and hyperfine splitting. The arrows illustrate the allowed
hyperfine transitions of the muon according to the selection rules !F = 0,±1

limits the experimental accuracy. Despite this limitation, very precise values for the charge
radius can be obtained. For 208Pb, e.g., the charge radius was determined with a relative
precision of 0.02% [43].

3.4 Extraction of quadrupole moments

The extraction of quadrupole moments from measured muonic X-rays spectra has been per-
formed many times in the past—as example see Refs. [40,44–46]. Here, we briefly describe
our extraction of the quadrupole moments for isotopically pure 185,187Re targets [47,48].

In heavy muonic atoms, there exists an intermediate domain of energy states such as
n = 5, n = 4 where the radius of the muon orbits is larger than the nuclear size and the
muon is not influenced by the presence of the surrounding atomic electrons. In this regime,
the hyperfine constants A1 and A2 [shown in Eqs. (8) and (9)] are independent of the details
of the electric quadrupole and magnetic moment distributions. Therefore, the measurement
of the quadrupole energy splitting is a direct probe of the spectroscopic quadrupole moment
which can be obtained by fitting the experimentally observed 5g → 4 f hyperfine transitions.

The 5g9/2 → 4 f7/2 and 5g7/2 → 4 f5/2 hyperfine complexes in 185,187Re are treated
together with three weaker multiplets which coincide in energy, namely the 5 f7/2 → 4d5/2,

123
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8
The Helen Diller Quantum Center, Department of Physics,

Technion-Israel Institute of Technology, Haifa, Israel
9
Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Mainz, Germany

10
PRISMA

+
Cluster of Excellence, Johannes Gutenberg-Universität Mainz, Mainz, Germany

11
Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

12
Laboratoire Kastler Brossel, Sorbonne Université, CNRS,
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Recent advances in muonic x-ray experiments have reinvigorated e!orts in measurements of ab-
solute nuclear charge radii. Here, a modern approach is presented, and demonstrated through
determination of the charge radii of the two stable chlorine nuclides 35Cl and 37Cl. Knowledge
of these radii has implications for fundamental studies in nuclear and atomic physics. For this
purpose, a state-of-the-art experiment was performed at the ωE1 beamline in the Paul Scherrer
Institute (Switzerland), using a large-scale HPGe detector array in order to extract precise energies
of the muonic 35Cl and 37Cl np1s transitions. The nuclear charge radius extraction relies on mod-
ern calculations for QED e!ects and nuclear polarization with rigorous uncertainty quantification,
including e!ects that were not accounted for in older studies. Additionally, we established a new
method for applying the nuclear shape correction directly from energy density functionals, which
are amenable to isotopes for which no high-quality electron scattering experiments are available.
The resulting charge radii are 3.3335(23) fm for 35Cl and 3.3445(23) fm for 37Cl, thus improving
the uncertainty of the available electron scattering values by a factor of seven. The correlation of
several observables was evaluated between the di!erent isotopes in order to produce a more precise
value of the di!erential mean square charge radius ε→r2↑37,35 = +0.0771(66) fm2. In this case, im-
provement of the uncertainty by more than one order of magnitude was achieved compared to the
literature value. This precision is su”cient to use this di!erential as input for isotope shift factor
determination.

Keywords: Nuclear charge radii, Muonic atoms

I. INTRODUCTION

The size of the atomic nucleus is one of its most fun-
damental properties. This quantity is most often ex-
pressed as the root-mean-square (RMS) nuclear charge
radius, commonly referred to as simply the charge ra-
dius. In itself, the charge radius is a sensitive probe
of nuclear structure, revealing e!ects such as shell clo-
sures [1, 2] and nuclear deformations [3]. In this scope,
nuclear charge radii have been broadly studied through-
out the nuclear landscape (see Ref. [4]). While many

→ Corresponding author: michael.heines@kuleuven.be

studies probe changes in radii through isotope shifts us-
ing laser spectroscopy [5], they all require benchmark nu-
clear charge radii. Traditionally, such benchmarks were
obtained for stable isotopes using muonic x-ray spec-
troscopy [6] and elastic electron scattering [7]. These
techniques faded out around the turn of the millennium,
as most stable isotopes had been probed and uncertain-
ties were deemed su”ciently low for the majority of ap-
plications.

Since then, several physics cases have been evaluated
that have the absolute charge radius as a leading sys-
tematic error. Among these are several fundamental
nuclear and atomic physics experiments. Recent work
showed that the absolute charge radius is critical for
the determination of the Vud element of the Cabibbo-

16

TABLE XIV: Resulting RMS radii of 35Cl and 37Cl (in fm and fm2). For the pure muonic RMS radii, the V2 is
taken from the basic charge distribution model introduced in Section IVE.

Radius Pure muonic Using BSkG4 Literature [49] Mirror estimates [13]

R35 3.3325(48) 3.3335(23) 3.388(17) 3.323(11)
R37 3.3448(48) 3.3445(23) 3.384(17) 3.338(7)
R37 →R35 0.0128(64) 0.01154(98) →0.004(24) 0.015(11)
ω↑r2↓37,35 0.085(43) 0.0771(66) →0.03(16) 0.103(70)

Parameter Excluding Cl Literature Cl This work
ε 11 13 13
ϑ2
ω 1.08 2.15 1.01

c1 1.380(36) 1.362(50) 1.367(32)
ε 10 12 12
ϑ2
ω 0.98 2.06 0.90

d0(10
→3) →6.4(4.4) →8.0(6.3) →6.7(4.2)

d1 1.465(68) 1.468(98) 1.457(63)
Corr(d0, d1) -86.8% -86.9% -87.9%

TABLE XV: Results from the mirror shift fit performed
under di!erent conditions, see Fig. 10. The horizontal
line marks separates the proportional and linear model.

cial to obtaining better results on nuclear structure and
hope that the present investigation will trigger a revival
of highly precise muonic x-ray experiments.
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Abstract: We, the QUARTET Collaboration, propose an experiment to measure the nuclear charge radii
of light elements with up to 20 times higher accuracy. These are essential both for understanding nuclear
physics at low energies, and for experimental and theoretical applications in simple atomic systems.
Such comparisons advance the understanding of bound-state quantum electrodynamics and are useful
for searching for new physics beyond the Standard Model. The energy levels of muonic atoms are
highly susceptible to nuclear structure, especially to the mean square charge radius. The radii of the
lightest nuclei (with the atomic number, Z = 1, 2) have been determined with high accuracy using
laser spectroscopy in muonic atoms, while those of medium mass and above were determined using
X-ray spectroscopy with semiconductor detectors. In this communication, we present a new experiment,
aiming to obtain precision measurements of the radii of light nuclei 3 → Z → 10 using single-photon
energy measurements with cryogenic microcalorimeters; a quantum-sensing technology capable of high
efficiency with outstanding resolution for low-energy X-rays.

Keywords: muonic atoms; charge radius; X-ray; metallic magnetic calorimeter (MMC); nuclear
structure; bound-state quantum electrodynamics (QED); simple atomic systems

1. Introduction
Muonic atoms are highly suitable systems for studying the nucleus. Due to the heavy

mass of muons (mµ ↑ 200 me, with me the electron mass), the Bohr radius of muonic atoms
is approximately 200 times smaller than that of electronic atoms, and thus, for low angular
momentum states, the muon wavefunction has a 2003 ↓ 106 times larger overlap with that
of the nucleus. The nuclear properties thus lead to measurable shifts in the atomic transition

Physics 2024, 6, 206–215. https://doi.org/10.3390/physics6010015 https://www.mdpi.com/journal/physics
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Table 1
The parameters c and t , the second and fourth moments R2 and R4, and the charge radii rc , as well as the values of two deviation factors σ1 and σ2, for 40Ca and 208Pb in 
four 2pf models. Note that the numbers that exactly reproduce the RCHB values are highlighted in bold form.

40Ca 208Pb

2pf(σ1) 2pf(R2,σ1) 2pf(R2,σ2) 2pf(R2,R4) 2pf(σ1) 2pf(R2,σ1) 2pf(R2,σ2) 2pf(R2,R4)

c (fm) 3.43431 3.51641 3.63210 3.72839 6.65823 6.66207 6.64228 6.70918
t (fm) 2.82022 2.55115 2.41134 2.28476 2.33968 2.26797 2.31614 2.14837

R2 (fm2) 12.7666 12.0755 12.0755 12.0755 30.5160 30.3103 30.3103 30.3103
R4 (fm4) 256.054 220.280 214.499 209.699 1195.877 1174.858 1178.577 1166.040
rc (fm) 3.5730 3.4750 3.4750 3.4750 5.5241 5.5055 5.5055 5.5055
σ1 (10−6 fm−5) 32.1726 44.8123 90.7370 195.203 9.71232 10.42702 11.3099 15.5466
σ2 (10−5 fm−3) 19.1357 18.4373 9.36914 16.1918 10.4874 13.9824 12.6133 29.1877

Table 2
Muonic transition energies (keV) calculated by using RCHB charge density, and the differences between them and the results of four 2pf distributions, for 40Ca and 208Pb. 
Numbers in parentheses represent the power of ten.

Transition "ERCHB
i

40Ca, "E2pf
i − "ERCHB

i "ERCHB
i

208Pb, "E2pf
i − "ERCHB

i

(keV) (40Ca) 2pf(σ1) 2pf(R2,σ1) 2pf(R2,σ2) 2pf(R2,R4) (208Pb) 2pf(σ1) 2pf(R2,σ1) 2pf(R2,σ2) 2pf(R2,R4)

2p3/2-1s1/2 778.229 −2.58 1.82(−1) 8.47(−2) 3.69(−3) 5917.293 −8.77 4.84 7.06 −4.51(−1)

2p1/2-1s1/2 776.766 −2.58 1.82(−1) 8.47(−2) 3.68(−3) 5735.444 −8.24 4.67 6.82 −4.57(−1)

3d3/2-2p1/2 157.439 −8.03(−3) −1.06(−3) −4.46(−4) 7.14(−5) 2619.561 −2.69 −7.98(−4) −9.02(−2) 2.15(−1)

3d5/2-2p3/2 156.124 −5.43(−3) −1.11(−3) −4.74(−4) 5.95(−5) 2479.793 −2.20 −1.78(−1) −3.40(−1) 2.12(−1)

3d3/2-2p3/2 155.976 −5.43(−3) −1.11(−3) −4.74(−4) 5.96(−5) 2437.712 −2.16 −1.72(−1) −3.31(−1) 2.09(−1)

5 f7/2-3d5/2 79.851 −1.96(−6) −6.14(−7) −3.05(−7) −5.66(−8) 1358.683 −5.67(−2) −1.88(−2) −2.75(−2) 1.87(−3)

5 f5/2-3d5/2 79.835 −1.95(−6) −6.05(−7) −2.96(−7) −4.78(−8) 1354.023 −5.64(−2) −1.87(−2) −2.74(−2) 1.87(−3)

4 f7/2-3d5/2 54.599 −1.96(−6) −6.07(−7) −2.99(−7) −5.04(−8) 932.086 −5.66(−2) −1.88(−2) −2.74(−2) 1.87(−3)

4 f5/2-3d5/2 54.568 −1.95(−6) −6.06(−7) −2.98(−7) −4.95(−8) 923.018 −5.63(−2) −1.87(−2) −2.73(−2) 1.87(−3)

4d5/2-3p1/2 55.074 −2.81(−3) −3.70(−4) −1.55(−4) 2.53(−5) 914.494 −7.84(−1) 4.73(−2) 4.00(−2) 6.57(−2)

4d5/2-3p3/2 54.705 −1.91(−3) −3.90(−4) −1.66(−4) 2.13(−5) 885.170 −6.94(−1) −2.38(−2) −6.41(−2) 7.31(−2)

4d3/2-3p3/2 54.643 −1.91(−3) −3.90(−4) −1.66(−4) 2.13(−5) 867.687 −6.75(−1) −2.12(−2) −5.96(−2) 7.15(−2)

visited in the form of theory-to-theory benchmarking analysis. 
Namely, the targeted muonic transition energies, which are calcu-
lated based on the RCHB charge densities, are used as the pseudo-
experimental data to constrain the 2pf parameters. For the sake 
of discussion, the root-mean-square deviation (RMSD) for muonic 
transition energies is defined by

δ =
[

1
N

∑

i

(
"E2pf

i − "ERCHB
i

)2
]1/2

, (11)

where "E2pf
i and "ERCHB

i are the i-th transition energy calcu-
lated with the 2pf charge distributions and the RCHB charge 
distributions, respectively, and N is the total number of transi-
tions considered. For convenience, four transitions with the largest 
transition energies, i.e., 2p3/2-1s1/2, 2p1/2-1s1/2, 3d3/2-2p1/2, and 
3d5/2-2p3/2, are considered in Eq. (11).

In panels (a) and (d) of Fig. 2, the trend of δ with the parame-
ter t changing from 1 to 3.5 fm is shown, where the parameter 
c is determined by minimizing the RMSD δ for each t . A min-
imum point of δ can be seen in the panels. Here, we use the 
shorthand writing 2pf("E) to denote the best-fit 2pf distribution 
which yield a minimum value of δ. The minimum values of δ read 
δ " 2.0 × 10−5 keV with t = 2.2950 fm and c = 3.7214 fm for 40Ca 
and δ " 0.0031 keV with t = 2.1821 fm and c = 6.6977 fm for 
208Pb. In addition, δ versus the second moment 〈r2〉 of the 2pf 
distribution with the same parameters as Figs. 2(a) and 2(d) is 
also displayed in Figs. 2(b) and 2(e). The second and fourth mo-
ments of the best fit are determined as the point of minimum 
δ, namely 〈r2〉 = 12.0778 fm2, 〈r4〉 = 210.145 fm4 for 40Ca, and 
〈r2〉 = 30.3225 fm2, 〈r4〉 = 1169.38 fm4 for 208Pb. Meanwhile, the 
referenced second moments from the RCHB calculations are also 
shown in the panels. The relative deviations in charge radii read 
|
√

12.0778 −
√

12.0755|/
√

12.0755 ≈ 0.01% for 40Ca and 0.02% for 
208Pb. Note that the source of the deviation here is the model 
dependency. From the above numbers, it can be seen that the in-

fluence of the model dependency on the extracted charge radii is 
rather small.

In practice, the accuracy of the extracted charge radii is limited 
by the total uncertainty of transition energies from experimental 
measurements, together with various additional corrections, such 
as vacuum polarization, relativistic recoil, self-energy, and nuclear 
polarization corrections [68–71]. Therefore, the determination of 
uncertainty of the extracted charge radii is in general a challeng-
ing task. In the present theory-to-theory benchmarking study, the 
dependence of the uncertainty in the extracted charge radii "rc on 
the uncertainty in the transition energies can be quantitatively in-
vestigated. The RMSD δ in the present calculations can be regarded 
as the total uncertainty of transition energies, and the difference of 
charge radii "rc = r2pf

c − rRCHB
c can be used to indicate the uncer-

tainty of the extracted charge radii. For this purpose, the variations 
of δ versus "rc for 40Ca and 208Pb are shown in Figs. 2(c) and 
2(f), respectively. The points at "rc = ±0.01 fm are marked and 
the corresponding values of δ, i.e., δ ≈ 0.0017 keV for 40Ca and 
δ ≈ 1 keV for 208Pb, are illustrated. In fact, it is quite challeng-
ing to make the total uncertainty of transition energies less than 
0.0017 keV for 40Ca. However, the uncertainty less than 1 keV for 
208Pb is available [3]. As a result, the uncertainty of the extracted 
charge radii less than 0.01 fm for 208Pb can be obtained. It can be 
deduced that the charge radii for the heavy nuclei can be extracted 
from muonic atom spectroscopy more accurately than for the light 
nuclei. Note once again that this conclusion is obtained based on 
the experimental accuracy and ignoring the uncertainties from the 
additional theoretical corrections.

In order to study the variation of δ versus the fourth moment, 
the influence of the second moment should be avoided. In Fig. 3, 
the steep tendency of RMSD δ with the fourth moment is illus-
trated, where parameter t is changed from 1 to 3.5 fm, and c is 
determined according to the additional constraint of the second 
moment. The fourth moment of the RCHB charge distributions is 
marked and a small deviation from the corresponding value at the 
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Fig. 2. The variation of δ for 40Ca and 208Pb: (a) and (d) δ versus parameter t of 2pf distribution, where parameter c are determined to minimize δ; (b) and (e) δ versus 
the second moment of 2pf distribution, where the black dashed lines indicate the second moment of RCHB charge distributions; (c) and (f) δ versus the difference of charge 
radii between the 2pf distributions and RCHB calculations, i.e., "rc = r2pf

c − rRCHB
c , where the black dashed lines represent "rc = ±0.01 fm.

Fig. 3. The root-mean-square deviation δ as a function of the fourth moment R4
of 2pf distribution for (a) 40Ca and (b) 208Pb. Different from Fig. 2, an additional 
constraint is imposed to keep the second moment constant, i.e., R2 = 12.07784 fm2

for 40Ca and 30.32254 fm2 for 208Pb. The black dashed lines indicate the data from 
RCHB calculations.

point of minimum δ can be seen. The relative deviations of the 
fourth moment are only around 0.2% and 0.3% for 40Ca and 208Pb, 
respectively. Therefore, it can be considered that the prediction of 
the fourth moment from the muonic atom spectrum is reliable.

In addition, the analysis using the Barrett model [1] is also per-
formed. The Barrett equivalent radius Rkα is defined by

3

R3
kα

Rkα∫

0

rke−αrr2 dr = 〈rke−αr〉. (12)

It can be iteratively calculated from the charge density without 
resolving the Dirac equation. The critical sensitivity of transition 
energies in muonic atoms to the Barrett equivalent radius has 
been illustrated [72,73]. Thus, the Barrett model provides a partic-
ular perspective to compare these 2pf distributions with the fitted 
parameters to the referenced charge density from the RCHB calcu-
lations. The comparisons of the Barrett equivalent radius for four 
2pf distributions and the RCHB calculations versus k for 40Ca and 
208Pb are shown in Fig. 4. The values of α are in general deter-
mined by the fitting of the differences of the potential that muon 
in state a makes and the potential that muon in state b makes, i.e., 
fab(r) = Va(r) − Vb(r) [3,72]. The muon potential in the state a is 
defined by [1]

Va(r) =
∞∫

0

P 2
a (r′) + Q 2

a (r′)
max(r, r′)

dr′, (13)

where Pa(r) and Q a(r) are the large and small components in 
Eq. (4), respectively. In the present calculations of the Barrett 
equivalent radius, the values of α are taken as 0.065 fm−1 for 
40Ca [2] and 0.1415 fm−1 for 208Pb [3]. Different from the practical 
analysis in experimental references, e.g., [3], the results of bench-
mark, i.e., “RCHB”, are displayed in the form of smooth curves 
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the second moment of 2pf distribution, where the black dashed lines indicate the second moment of RCHB charge distributions; (c) and (f) δ versus the difference of charge 
radii between the 2pf distributions and RCHB calculations, i.e., "rc = r2pf

c − rRCHB
c , where the black dashed lines represent "rc = ±0.01 fm.

Fig. 3. The root-mean-square deviation δ as a function of the fourth moment R4
of 2pf distribution for (a) 40Ca and (b) 208Pb. Different from Fig. 2, an additional 
constraint is imposed to keep the second moment constant, i.e., R2 = 12.07784 fm2

for 40Ca and 30.32254 fm2 for 208Pb. The black dashed lines indicate the data from 
RCHB calculations.
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fourth moment are only around 0.2% and 0.3% for 40Ca and 208Pb, 
respectively. Therefore, it can be considered that the prediction of 
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energies in muonic atoms to the Barrett equivalent radius has 
been illustrated [72,73]. Thus, the Barrett model provides a partic-
ular perspective to compare these 2pf distributions with the fitted 
parameters to the referenced charge density from the RCHB calcu-
lations. The comparisons of the Barrett equivalent radius for four 
2pf distributions and the RCHB calculations versus k for 40Ca and 
208Pb are shown in Fig. 4. The values of α are in general deter-
mined by the fitting of the differences of the potential that muon 
in state a makes and the potential that muon in state b makes, i.e., 
fab(r) = Va(r) − Vb(r) [3,72]. The muon potential in the state a is 
defined by [1]

Va(r) =
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a (r′) + Q 2

a (r′)
max(r, r′)

dr′, (13)

where Pa(r) and Q a(r) are the large and small components in 
Eq. (4), respectively. In the present calculations of the Barrett 
equivalent radius, the values of α are taken as 0.065 fm−1 for 
40Ca [2] and 0.1415 fm−1 for 208Pb [3]. Different from the practical 
analysis in experimental references, e.g., [3], the results of bench-
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ρ(r) =
ρ0

1 + exp[4 ln 3(r − c)/t]

H.H. Xie, T. Naito, J. Li et al. Physics Letters B 846 (2023) 138232

Fig. 1. Comparison of charge densities from the RCHB theory with those of 2pf distributions for (a) 40Ca and (b) 208Pb. The 2pf parameters are determined by fitting the 
RCHB charge densities in four different ways, i.e., 2pf(σ1), 2pf(R2,σ1), 2pf(R2,σ2), and 2pf(R2,R4). See texts for details.

where Z represents the proton number. The n-th moment is given 
by

Rn ≡ 〈rn〉 = 4π

Z

∞∫

0

ρc(r)rn+2 dr. (8)

In the following investigation, first of all, the parameters c and 
t of 2pf distribution are determined by fitting the RCHB charge 
densities in several feasible ways, with ρ0 determined by the nor-
malization. In order to fit the RCHB charge densities, two alterna-
tive deviation factors have been used to indicate the deviations of 
fitted 2pf distributions from the RCHB charge densities in shape, 
namely,

σ1 =
∞∫

0

(
ρ2pf

c (r) − ρRCHB
c (r)

)2
dr (9)

and

σ2 =
∞∫

0

(
ρ2pf

c (r) − ρRCHB
c (r)

)2
r2 dr, (10)

where σ2 is more sensitive to the surface region of charge density 
than σ1, since in integral of σ2 an additional factor r2 is multiplied. 
Specifically, four 2pf distributions are obtained here, i.e., 2pf(σ1) is 
determined by minimizing the deviation factor σ1, 2pf(R2,σ1) and 
2pf(R2,σ2) are determined by minimizing respectively σ1 and σ2
with the second moment R2 constraint, and 2pf(R2,R4) is deter-
mined by constraining the second and fourth moments. The fourth 
moment R4 is of interest here, considering that R4 is more sensi-
tive to the surface region of nuclear charge density.

As shown in Fig. 1, four 2pf distributions are compared with 
the charge density from the RCHB calculations. It can be seen from 
Fig. 1(a) that the central densities of four 2pf distributions for 40Ca 
are visibly different. The curve of 2pf(R2,R4) deviates furthest from 
the RCHB calculation, and the curve of 2pf(R2, σ2) is the next. In 
contrast, the curve of 2pf(σ1) is closest in shape to the RCHB calcu-
lation. As for 208Pb in Fig. 1(b), it shows less differences between 
four 2pf distributions. Nevertheless, the curve of 2pf(R2,R4) also 
shows the most deviation from the RCHB calculation. On the other 
hand, in the insets of Fig. 1 the logarithmic scale is taken to em-
phasize the difference of charge density at the surface. One can see 
from the insets that the distributions of 2pf(R2,R4) are the closest 

ones to the RCHB charge density distributions among four distribu-
tions at the nuclear surface, i.e., r > 6 fm for 40Ca and r > 8 fm for 
208Pb. In contrast, the charge distributions 2pf(σ1) are in the worst 
agreement with the RCHB calculations. With regard to the rest of 
two 2pf distributions, the curve of 2pf(R2,σ2) is closer to (further 
away from) the curve of RCHB than 2pf(R2,σ1) for 40Ca (208Pb).

The fitted parameters c and t of four 2pf distributions, to-
gether with the corresponding second and fourth moments and 
charge radii rc , as well as two deviation factors σ1 and σ2 are 
shown in Table 1. Since the results of 2pf(σ1) are obtained with-
out the second-moment constraint, there exists a visible differ-
ence in the second moment between 2pf(σ1) and the others, i.e., 
around 0.7 fm2 for 40Ca and 0.2 fm2 for 208Pb. Moreover, it can be 
seen that the parameters determined in 2pf(σ1), 2pf(R2,σ1), and 
2pf(R2,σ2), without the fourth-moment constraint, generally over-
estimate the fourth moments.

In Table 2, the muonic transition energies calculated by us-
ing the RCHB charge density, and the differences between them 
and the results calculated by using the 2pf distributions are 
shown. Twelve muonic transition energies for 40Ca and 208Pb are 
given, namely, 2p3/2-1s1/2, 2p1/2-1s1/2, 3d3/2-2p1/2, 3d5/2-2p3/2, 
3d3/2-2p3/2, 5 f7/2-3d5/2, 5 f5/2-3d5/2, 4 f7/2-3d5/2, 4 f5/2-3d5/2, 
4d5/2-3p1/2, 4d5/2-3p3/2, and 4d3/2-3p3/2, involving fourteen lev-
els.

In comparison, the results of 2pf(σ1) are in the worst agree-
ment with RCHB calculations and the results of 2pf(R2,R4) are 
in the best agreement with RCHB calculations. For example, the 
2pf(σ1) gives 2.58 keV derivation from RCHB for 2p3/2-1s1/2 in 
40Ca. After considering the second moment constraint R2 with 
different deviation factors minimized, 2pf(R2,σ1) and 2pf(R2,σ2) 
give the derivations −0.182 and −0.0847 keV, respectively. Fur-
thermore, with both second- and fourth-moment constraints, the 
derivation from RCHB calculations decreases to −3.65 × 10−3 keV. 
A similar conclusion for other transition energies in 40Ca and 208Pb 
is also observed in Table 2. In view of the comparison of charge 
distribution between RCHB calculations and four 2pf distributions 
shown in Fig. 1, it is concluded that the surface of nuclear charge 
density plays a much more important role in the muonic atom 
spectrum than the center. Furthermore, it implies the considerable 
sensitivities of the transition energies to the second and fourth 
moments. A quantitative discussion is given in the next section.

3.2. Fitting the muonic transition energies

In this section, the procedure to extract the charge radii from 
the muonic transition energies with the 2pf distribution is re-

3
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Table 1
The parameters c and t , the second and fourth moments R2 and R4, and the charge radii rc , as well as the values of two deviation factors σ1 and σ2, for 40Ca and 208Pb in 
four 2pf models. Note that the numbers that exactly reproduce the RCHB values are highlighted in bold form.

40Ca 208Pb

2pf(σ1) 2pf(R2,σ1) 2pf(R2,σ2) 2pf(R2,R4) 2pf(σ1) 2pf(R2,σ1) 2pf(R2,σ2) 2pf(R2,R4)

c (fm) 3.43431 3.51641 3.63210 3.72839 6.65823 6.66207 6.64228 6.70918
t (fm) 2.82022 2.55115 2.41134 2.28476 2.33968 2.26797 2.31614 2.14837

R2 (fm2) 12.7666 12.0755 12.0755 12.0755 30.5160 30.3103 30.3103 30.3103
R4 (fm4) 256.054 220.280 214.499 209.699 1195.877 1174.858 1178.577 1166.040
rc (fm) 3.5730 3.4750 3.4750 3.4750 5.5241 5.5055 5.5055 5.5055
σ1 (10−6 fm−5) 32.1726 44.8123 90.7370 195.203 9.71232 10.42702 11.3099 15.5466
σ2 (10−5 fm−3) 19.1357 18.4373 9.36914 16.1918 10.4874 13.9824 12.6133 29.1877

Table 2
Muonic transition energies (keV) calculated by using RCHB charge density, and the differences between them and the results of four 2pf distributions, for 40Ca and 208Pb. 
Numbers in parentheses represent the power of ten.

Transition "ERCHB
i

40Ca, "E2pf
i − "ERCHB

i "ERCHB
i

208Pb, "E2pf
i − "ERCHB

i

(keV) (40Ca) 2pf(σ1) 2pf(R2,σ1) 2pf(R2,σ2) 2pf(R2,R4) (208Pb) 2pf(σ1) 2pf(R2,σ1) 2pf(R2,σ2) 2pf(R2,R4)

2p3/2-1s1/2 778.229 −2.58 1.82(−1) 8.47(−2) 3.69(−3) 5917.293 −8.77 4.84 7.06 −4.51(−1)

2p1/2-1s1/2 776.766 −2.58 1.82(−1) 8.47(−2) 3.68(−3) 5735.444 −8.24 4.67 6.82 −4.57(−1)

3d3/2-2p1/2 157.439 −8.03(−3) −1.06(−3) −4.46(−4) 7.14(−5) 2619.561 −2.69 −7.98(−4) −9.02(−2) 2.15(−1)

3d5/2-2p3/2 156.124 −5.43(−3) −1.11(−3) −4.74(−4) 5.95(−5) 2479.793 −2.20 −1.78(−1) −3.40(−1) 2.12(−1)

3d3/2-2p3/2 155.976 −5.43(−3) −1.11(−3) −4.74(−4) 5.96(−5) 2437.712 −2.16 −1.72(−1) −3.31(−1) 2.09(−1)

5 f7/2-3d5/2 79.851 −1.96(−6) −6.14(−7) −3.05(−7) −5.66(−8) 1358.683 −5.67(−2) −1.88(−2) −2.75(−2) 1.87(−3)

5 f5/2-3d5/2 79.835 −1.95(−6) −6.05(−7) −2.96(−7) −4.78(−8) 1354.023 −5.64(−2) −1.87(−2) −2.74(−2) 1.87(−3)

4 f7/2-3d5/2 54.599 −1.96(−6) −6.07(−7) −2.99(−7) −5.04(−8) 932.086 −5.66(−2) −1.88(−2) −2.74(−2) 1.87(−3)

4 f5/2-3d5/2 54.568 −1.95(−6) −6.06(−7) −2.98(−7) −4.95(−8) 923.018 −5.63(−2) −1.87(−2) −2.73(−2) 1.87(−3)

4d5/2-3p1/2 55.074 −2.81(−3) −3.70(−4) −1.55(−4) 2.53(−5) 914.494 −7.84(−1) 4.73(−2) 4.00(−2) 6.57(−2)

4d5/2-3p3/2 54.705 −1.91(−3) −3.90(−4) −1.66(−4) 2.13(−5) 885.170 −6.94(−1) −2.38(−2) −6.41(−2) 7.31(−2)

4d3/2-3p3/2 54.643 −1.91(−3) −3.90(−4) −1.66(−4) 2.13(−5) 867.687 −6.75(−1) −2.12(−2) −5.96(−2) 7.15(−2)

visited in the form of theory-to-theory benchmarking analysis. 
Namely, the targeted muonic transition energies, which are calcu-
lated based on the RCHB charge densities, are used as the pseudo-
experimental data to constrain the 2pf parameters. For the sake 
of discussion, the root-mean-square deviation (RMSD) for muonic 
transition energies is defined by

δ =
[

1
N

∑

i

(
"E2pf

i − "ERCHB
i

)2
]1/2

, (11)

where "E2pf
i and "ERCHB

i are the i-th transition energy calcu-
lated with the 2pf charge distributions and the RCHB charge 
distributions, respectively, and N is the total number of transi-
tions considered. For convenience, four transitions with the largest 
transition energies, i.e., 2p3/2-1s1/2, 2p1/2-1s1/2, 3d3/2-2p1/2, and 
3d5/2-2p3/2, are considered in Eq. (11).

In panels (a) and (d) of Fig. 2, the trend of δ with the parame-
ter t changing from 1 to 3.5 fm is shown, where the parameter 
c is determined by minimizing the RMSD δ for each t . A min-
imum point of δ can be seen in the panels. Here, we use the 
shorthand writing 2pf("E) to denote the best-fit 2pf distribution 
which yield a minimum value of δ. The minimum values of δ read 
δ " 2.0 × 10−5 keV with t = 2.2950 fm and c = 3.7214 fm for 40Ca 
and δ " 0.0031 keV with t = 2.1821 fm and c = 6.6977 fm for 
208Pb. In addition, δ versus the second moment 〈r2〉 of the 2pf 
distribution with the same parameters as Figs. 2(a) and 2(d) is 
also displayed in Figs. 2(b) and 2(e). The second and fourth mo-
ments of the best fit are determined as the point of minimum 
δ, namely 〈r2〉 = 12.0778 fm2, 〈r4〉 = 210.145 fm4 for 40Ca, and 
〈r2〉 = 30.3225 fm2, 〈r4〉 = 1169.38 fm4 for 208Pb. Meanwhile, the 
referenced second moments from the RCHB calculations are also 
shown in the panels. The relative deviations in charge radii read 
|
√

12.0778 −
√

12.0755|/
√

12.0755 ≈ 0.01% for 40Ca and 0.02% for 
208Pb. Note that the source of the deviation here is the model 
dependency. From the above numbers, it can be seen that the in-

fluence of the model dependency on the extracted charge radii is 
rather small.

In practice, the accuracy of the extracted charge radii is limited 
by the total uncertainty of transition energies from experimental 
measurements, together with various additional corrections, such 
as vacuum polarization, relativistic recoil, self-energy, and nuclear 
polarization corrections [68–71]. Therefore, the determination of 
uncertainty of the extracted charge radii is in general a challeng-
ing task. In the present theory-to-theory benchmarking study, the 
dependence of the uncertainty in the extracted charge radii "rc on 
the uncertainty in the transition energies can be quantitatively in-
vestigated. The RMSD δ in the present calculations can be regarded 
as the total uncertainty of transition energies, and the difference of 
charge radii "rc = r2pf

c − rRCHB
c can be used to indicate the uncer-

tainty of the extracted charge radii. For this purpose, the variations 
of δ versus "rc for 40Ca and 208Pb are shown in Figs. 2(c) and 
2(f), respectively. The points at "rc = ±0.01 fm are marked and 
the corresponding values of δ, i.e., δ ≈ 0.0017 keV for 40Ca and 
δ ≈ 1 keV for 208Pb, are illustrated. In fact, it is quite challeng-
ing to make the total uncertainty of transition energies less than 
0.0017 keV for 40Ca. However, the uncertainty less than 1 keV for 
208Pb is available [3]. As a result, the uncertainty of the extracted 
charge radii less than 0.01 fm for 208Pb can be obtained. It can be 
deduced that the charge radii for the heavy nuclei can be extracted 
from muonic atom spectroscopy more accurately than for the light 
nuclei. Note once again that this conclusion is obtained based on 
the experimental accuracy and ignoring the uncertainties from the 
additional theoretical corrections.

In order to study the variation of δ versus the fourth moment, 
the influence of the second moment should be avoided. In Fig. 3, 
the steep tendency of RMSD δ with the fourth moment is illus-
trated, where parameter t is changed from 1 to 3.5 fm, and c is 
determined according to the additional constraint of the second 
moment. The fourth moment of the RCHB charge distributions is 
marked and a small deviation from the corresponding value at the 

4
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TABLE IV. Experiaiental equivalent radii Rq and Barrett moments (r e ~") deduced from the 2pg2-1s f/2 transition
energies. Fits were made using two-parameter Fermi charge distributions with a fixed at 0.55 fm. The theoretical
nuclear polarization (NP) and quantum electrodynamic (QED) corrections used in the analysis are listed. The uncer-
tainty in the nuclear polarization corrections, estimated to be 0.003 fm for the equivalent radii and 0.012 fm for the
Barrett moments, are not included in the errors. The deduced rms radii are model dependent.

Isotope

Expe rimental
transition
energy
(keV}

Correction
NP QED c
(keV) (keV) (fm)

(r2)'"
(fm)

G Cg
(fm"~) (fm/keV)

Rp
(fm)

(+0 RQ
(fm" /keV) (fm )

4'K
~Ca
42C
4sCa
44( a
4'Ca
48C
4'Sc

"Ti
48Ti
"Ti
"Ti
"v
"Cr
"Cr
"Cr
'4cr
"Mn
"Fe

713.118(32)
712.769(28)
784.180(25)
783.369(29)
783.811(27)
783.156(26)
783.817(107)
784.487(26)
856.995(28)
931.994(26)
932.474(25)
932.652 (26)
933.426 (33)
933.588(26)
1012.201(26)
1091.178(27)
1092.286 (21)
1091.381(25)
1089.888(31)
1172.854(34)
1257.042(25)

0.145
0.150
0.170
0.196
0.181
0.205
0.208
0.190
0.233
0.285
0.265
0.284
0.237
0.253
0.296
0.392
0.353
0.342
0.386
0.396
0.459

5.324
5.305
5.907
5.891
5.897
5.886
5.897
5.905
6.489
7.093
7.099
7.103
7.113
7.114
7.758
8.391
8.408
8.391
8.366
9.041
9.715

3.5681
3.5956
3.6377
3.6858
3.6643
3.7015
3.6713
3.6393
3.7465
3.8401
3.8230
3.8185
3.7892
3.7851
3.8307
3.9262
3.8962
3.9222
3.9661
3.9962
4.0449

3.4378
3.4549
3.4813
3.5115
3.4980
3.5214
3.5024
3.4823
3.5498
3.6094
3.5984
3.5956
3.5770
3.5743
3.6033
3.6645
3.6452
3.6620
3.6902
3.7096
3.7412

2.114
2.114
2.114
2.114
2.114
2.114
2.114
2.114
2.116
2.118
2.118
2.118
2.118
2.118
2,116
2.115
2.115
2.115
2.115
2.120
2.121

0.064
0.064
0.065
0.065
0.065
0.065
0.065
0.065
0.066
0.068
0.068
0.068
0.068
0.068
0.069
0.071
0.071
0.071
0.071
0.072
0.074

-0.0499
-0.0499
-0.0420
-0.0420
-0.0420
-0.0420
-0.0420
-0.0420
-0.0356
-0.0307
-0.0307
-0.0307
-0.0307
-0.0307
-0.0265
-0.0232
-0.0232
-0.0232
-0.0232
-0.0203
-0.0181

4.4073(16)
4.4293(14)
4.4626 (10)
4.5016(12)
4.4841(11)
4.5143(11)
4.4898{45)
4.4639(11)
4.5505{10)
4.6261(8)
4.6120(8)
4.6083(8)
4.5843(10)
4.5809{8)
4.6173(7)
4.6947(6)
4.6698(5)
4.6914(6)
4.72 78(7)
4.7527(7)
4.7921{5)

-0.2276
-0.2276
-0.1922
-0.1922
-0.1922
-0.1922
-0.1922
-0.1922
-0.1649
-0.1419
-0.1419
-0.1419
-0.1419
-0.1419
-0.1219
-0.1063
-0.1063
-0.1063
-0.1063
-0.0945
-0.0834

10.666(7)
10.767(6)
10.879(5)
11.057(6}
10.977(5)
11.116(5)
11.003(21)
10.884(5)
11.270(5)
11.563(4)
11.498(4)
11.481(4)
11.370(5)
11.354(4)
11.448(3)
11.698(3)
11.584(2)
11.683(3)
11.850(3)
11.999{3)
12.102(2)

TABLE V. Comparison with previous measurements. When necessary the values were
converted from the 2p3g2-ls&g2 transition energies to 2p-1s center of gravity values by sub-
tracting —of the theoretical fine-structure splitting. The 2P-1s center of gravity values for

3
a natural target were calculated from the present values for separated isotopes taking into
account the natural isotopic composition.

Isotope(s)

nat K

natCa

natT.1
nat

natC
nat
Mn

42C a 40Ca
Ca- Ca

Ca- Ca
52C ~50C r
5'Cr 5'Cr
54C~»Cr

Measured
quantity

2P-1s energy

2P-1s energy

2P-1s energy
2P-1s energy
2P-1s energy
2p-1s energy
isotope shift
isotope shift
isotope shift

isotope shift
isotope shift
isotope shift
isotope shift

P resent value
(keV)

712.690(32)

783.659(25)

931.959(26)
1011.342 (26)
1091.081(27)
1171.666(35)
-0.349(24)
-0.811(16)-1.024 (13)
0.307(12)
1.108(22)
-0.905(19)
-2.398(20)

P revious
measurements

{keV)

712.24 (40)
712.64(23)
712.654(20)
784.00(40)
783.85(15)
783.56(16)
931.57(4O)
1011.3(2.3)
1094.4(4.3)
1171.2 (4)
-0.350 (60)
-0.690(60)
-0.890(50)
-0.990(100)
0.47O(12O)
0.830(80}
-o.7oo(8o)
-2.17o{200)

Ref.

21
9
22

21
23
9

21
24
25
26
9
27
27
20
27
20
20
20
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FIG. 2. Typical spectra showing the muonic 2p-lz x-ray doublet for Ti and Cr isotopes. The shifts of the x-ray

energies are seen to have opposite signs for Ti- Ti and +Gr-~ Cr. The substantial {24%) Ti contamination of the
~ Ti target is visible. The curves show fits to the measured spectra. The weak line at about 937.5 keV is caused by
feedthrough of the ' Ag calibration source.

elude the uncertainty (~ 15 eV} of the nonlinearity
correction.
In addition, best values for the 2p»-1s» abso-

lute transition energies were determined as fol-
lows. In a second least squares adjustment, the
transition energy of a single isotope was varied
while the transition energy differences between
the 21 nuclei were held fixed at the values from
the first fit. This procedure yields a set of least
squares adjusted absolute transition energies that
are constrained to be consistent with the shift
values. These transition energies are listed in
Table IV. The X' per degree of freedom of this
adjustment was 1.05, a value which indicates that
the influence of electronic instabilities and geo-
metric effects on the measured transition energies
and on their differences are small compared to
the statistical error (25 eV) of a single measure-

ment.
The uncertainties attached to the transition en-

ergies were obtained by quadratic addition of the
following terms: (1) statistical error in the loca-
tion of the line centroid; (2) a fitting error un-
certainty (~ 15 eV) resulting from the fact that the
fine-structure splitting was not resolved; (3) the
uncertainty (5 eV} of the calibration energies; and
(4) the uncertainty of the nonlinearity correction
(&15 eV).
%e note that the values given here for the 2p3p-
1s» transition energies of the Ca isotopes are 40
eV smaller than the values given in our previous
publication. " This energy shift is due to including
in the least squares energy adjustments the results
of a high-precision remeasurement of Ca per-
formed after the publication of Ref. 12.
Table V compares the transition energies and

H.D. Wohlfahrt, E.B. Shera, M.V. Hoehn, Y. Yamazaki, R.M. Steffen, 
Phys. Rev. C 23 (1981) 533.
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TABLE I. Comparison between the theoretical and experimental energies (keV) for the muonic x rays. Impor-
tant corrections to the point-nucleus Dirac energies are also shown.

Z Element Transition Finite Size
Effect

Vocuum Polarization
of Higher

Order a Order (a', (Za)')
tota I (theor y) experiment theory-exp. (ev}

(discrepancy pprn)

20 Co

22

26 Fe

38 Sr

47 Ag

48 Cd

50 Sn

56 Ba

3ds/2 2p l/2
3ds/2 2p ~

4fS/2
4f 7/2 3ds/2

-.078
—.028
—.154
—.058
—.439
—.163
—.004
—.002
—~ 029
—.0 I I

—.036
—.OI4
—.050
—.OI9
—.140
—.053

0.734
0.7)6
0.947
0.920
I.473
1.41 9

0.852
0.833
I.519
I.470
I.608
I.555
I. 795
I. 731

2.435
2.328

.006.006

.009.009

.016.016

.008.OQ8

.017.017

.019

.019

.022

.022

.033.033

158. I 81+,oos 158.173+.o l8 8+ l 8 (5)+ ll4)
156.845+.oo2 156.830+.ole ) 5+ &e (96+l02)

191.921+.ooe 191.921+.Ole Q+ lg ( p+ 99)
)89.977+.oo4 189.967+.ol7 10 + l8 (53+ 95)

269.462+.o lo 269.427+.QI7 35+ 2o(13Q+ 74)
265.727+ -ooe 265.705+.ole 22+ l7 ( 83+ 64)

200.275+.oo3 200.254+.o2o 21 + 20(IQ5+ Ioo)
198.712+ 003 198,708+ ~ ole 4 + le ( 20+ 9 l )

308.472+.«5 308.428+.olg 44+2o(143+ 65)
94-'-oo 304.759+.ol7 35+ le (I I g+ 5g)

322.0)2+.oos 321.g73+,OI8 39+ lg (121+ 59)
3I8.006+.oos 317.g77+.ol7 29+ le( gl+ 57)

350.000+.ooe 349.g 53+.o2o 47+ 2l(134+ eo)
345.276+.005 345.226+.ole 5Q+ l9 (145+55)

441.398+.oo7 44).299+.o2l 99+ 22(224+5o)
433,943+.007 433.829+.ol9 ) )4+ 2P (23+46)

g 7/2 5/2
g 9/2 7/2

.000 0.762

. 000 0.748
.009.009 201.291+-oo4 201.26Q-+.ole 31'- l7 (154'-84)

199.924+.oo4 199.902+.ol5 22 le(1 Ip eo)

82 Pb —.0)0
—.004

2.190
2.)06

.037.035 7 824+ olo 437 687+ 020 137+22(313+5o)
43).407+.oo9 43), 285+,ol7 )22+ l9(283+44)

150—

~ 100
I

8
UJ

0

1

200 300
theory (keV)

FIG. 1. The discrepancy ~th ~, (eV) plotted
against the theoretical transition energies for 20 mu-
onic x-ray transitions.

400

might suspect a shift due to a resonance with a
nuclear level. However, all our measurements
show this trend, as is evident from Fig. 1.
Such a discrepancy contradicts the work of

Backenstoss et al. ' Indeed, our measurement

of the 5g-4f transitions in Pb show that they
lie lower by 120 ev (2.8 times the combined
standard deviation). We have no ready explana-
tion for this discrepancy. However, we had bet-
ter resolution, higher precision, and a larger
measurement set. On the other hand, if our re-
sults are accepted at face value it is no simple
task to resolve the discrepancy between theory
and experiment.
If we suppose that the discrepancy is due to

an overestimate of the vacuum polarization cor-
rection we have to believe that this can be as
large as (3.4+0.4)%. The validity of quantum-
electrodynamic calculations in general has been
shown to be much better than this. " We cannot
claim that the present evidence is convincing
as Iong as other ways to explain the discrepancy
might exist. Among other possibilities, it may
be that the finite size effect has not been taken
properly into account. Nothing guarantees that
the Fermi distribution gives an adequate descrip-
tion of the nuclear charge distribution to the ac-

880
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TABLE I. Comparison of the experimental and calculated transition energies
for several muonic atoms which are sensitive to the vacuum-polarization cor-
rection. The theoretical numbers are from Ref. 6. The weighted deviation of
all transitions, as a fraction of the vacuum-polarization correction, is 0.0018
+ 0.0015.

Transition
Experiment

(eV)
Theory
(eV)

Vacuum
polari-
zation
(eV)

Theory —experiment
(eV)

Ca M-2P

Ba 5g-4f

Sn 4f M-
Tl 5g-4f
Pb 5g-4f

Ba 4f-3d

156 842.4 + 5.2
158 171.6 + 6.6
199917.3+ 4.8
201 274.7 a 7.1
345 253.7 + 6.9
349 975.4 + 4.9
420 757.3+ 3.7
431 327.6 + 3,4
437 749.4+ 13,7
433904.8+ 9.6
441 361.7 + 5.1

156845+ 3
158182+4
199907+ 3
201 274+ 3
345 254+ 5
349 978+ 5
420 765+ 7
431336+7
437 751+ 7
433910+7
441 365+ 7

716
734
748
762
1731
1795
2038
2106
2190
2328
2435

2.6 + 6.0
10.4+ 7.7

—10.3+ 5.7
—.0.7+ 7.7
0.3+ 8.5
2.6 + 7.0
7.7 + 7.9
8.4~ 7.8
1.6+ 15.3
5.2 + 11..9
3.3+ 8.7

energy range. The calibration uncertainty was
determined to be between O.V and 3 eV, depending
on the energy, by use of subsets of the standard
y rays. Full details of the experimental tech-
niques will be given in a forthcoming paper on
precision measurements of muonic-atom transi-
tions.
%e report here the eleven transition energies

in five elements in the energy range 150-450 keV
used to test the theory. The energies derived
using two independent line-fitting functions, the
ratio of two quartics" and a Gaussian with expo-
nential tails, gave the same results within 1 eV.
The calibration lines were initially fitted to deter-
mine the variation of the line-shape parameters
as a function of channel number. Then the source
peaks were refitted with the new parameters to
give the energy calibration. The muoni. c x-ray
peaks were then fitted using the appropriate pa-
rameters with a Lorentzian folded in to account
for the natural x-ray linewidth. From the posi-
tions thus determined and the calibration, the en-
ergies were calculated. No further corrections
were made. M The results are shown in Table I,
along with the theoretical energies" and vacuum
polarization as quoted by Vuilleumier et at.' The
error quoted includes the statistical error, the
error due to interfering lines, the calibration
error (0.7 to 3 eV), and a constant systematic
error of 1.7 eV, This last error accounts for the
uncertainty in the '"Au line (1.2 eV), the fitting
error (1 eV), angular effect (0.7 eV), and timing

effect (0.1 eV). All errors were added in quadra-
ture. We also show the difference between the
measured and calculated energies.
An inspection of the table shows that there is

good agreement between theory and experiment.
Further, if we assign the difference totally to the
vacuum-polarization correction, we find that the
average difference is (0.18+ 0.15)%.
We wish to thank Karl Hafner, Allen Clark,

Jean-Paul I.egault, and Les Bird for their as-
sistance with the apparatus, and Joe Kukulka for
the on-line programming. %e are indebted to
R. D. Deslattes, P. J. S.Watson, and M. K. Sun-
daresan for useful discussions. Finally the co-
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preciated. The U. S. Energy Research and De-
velopment Administration kindly loaned us the' Pb target.
This work was supported by the National Re-
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National Science Foundation and the U. S. Energy
Research and Development Administration.
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Ge(Li) detector with resolution of 600 eV @ 136 keV

Ge detector with resolution of 870 eV @ 316 keV
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研究目標・計画
● 48Ca (天然存在比 0.187%) は非常に高額 

● 目標：CANDLES実験（計画研究A02) で開発中の48Ca同位体濃縮技術で濃縮された48Caを提
供してもらい、また濃縮48Tiを購入し、J-PARC MLF でミュオンビームを用いた実験を行う。 

▷濃縮した48Caをどのようにして取り出して実験標的にするか検討 

▷mudirac をベースに、ミュオニック原子のエネルギー準位を計算 

▷計画研究E01との連携 (?) : 48Ca, 48Tiの電荷密度分布と0νββ崩壊の核行列要素との関連？ 

● 2025年度4-5月に, CaF2 (40Ca) を用いた短時間の測定（→川崎海斗 ポスター発表P20） 

▷ 3d3/2-2p1/2, 3d5/2-2p3/2 遷移のピークを確認

15

[GitHub] https://github.com/muon-spectroscopy-computational-project/mudirac



結論
● カルシウム原子核の荷電半径の質量数依存性が他の元素とは大きく異なる 
● ミュオン原子のX線分光を通じて、カルシウム同位体の電荷密度分布（荷電半径

, , Barrett半径）の再評価を行いたい。 

● 本研究では特に48Caと48Tiに焦点を当てて研究を進めていく。 

● 0νββ崩壊の核行列要素M0νとの関連についても議論していきたい。
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Barrett radius
● The shift of the transition energy in muonic atoms due to a variation of the 

spherical nuclear charge distribution, , is expressed as: 

 

● The potential difference  can be approximated by . 
● The Barrett moment  is insensitive to the detail of the nuclear charge 

distribution. 
● An equivalent Barrett radius , which satisfies the following relation, is used in 

literature. 

  

δρ(r)

ΔEif = 4π∫ δρ(r)[V i(r) − V f(r)]r2dr

V i(r) − V f(r) Brke−αr

⟨rke−αr⟩

Rkα

⟨rke−αr⟩ =
3
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