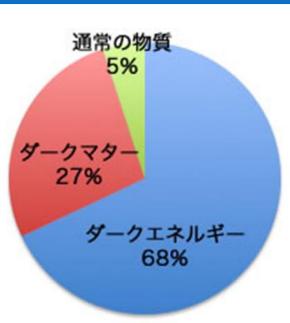


KamiokaCryolabでの軽い暗黒物質探索に向けた 中性子背景事象の評価

東北大学 ニュートリノ科学研究センター 4年 川浪康世


1.Introduction

Motivation

Dark matter

Occupies 27% of total mass of universe No charge and stable

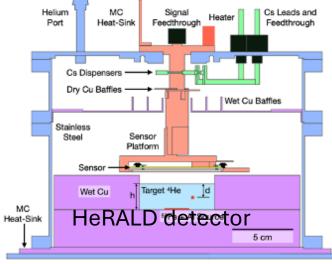
Important to understand the origin of universe

Component of universe

Kamioka Cryolab, located in KamLAND area, is planning a light dark matter(<GeV) search using a superconductor sensor. In ultra low-background experiment, it is important to evaluate the

2.Principle

Principle


HeRALD module is installed to detect low-energy DM-nuclei recoil. ➤Use superfluid He4 as a target Sensitive to low energy DM-nuclei recoil

Background

Background candidates ≻Muon

 \succ Gamma ray

➤Ambient neutron etc.

ambient radioactivity

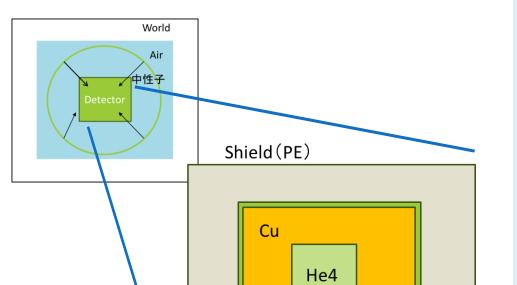
Kamioka Cryolab aims to accomplish the background less than 10 events/keV/kg/day

Ambient neutron is one of serious backgrounds for a direct dark matter search

- Here I evaluated ambient neutron background
- > I also discuss how we can achieve goal

(<10events/keV/kg/day)

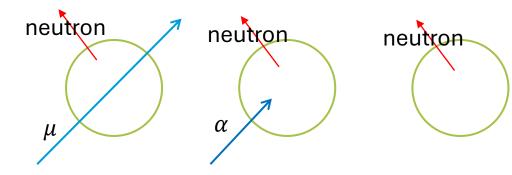
Kamioka Cyolab


3.Setup and Simulation

Setup

Simulated deposit energy of neutron in He4 on Geant4 (ver:11.0.4, Physics List:QGSP_BIC_HP) Used a very simplified geometry

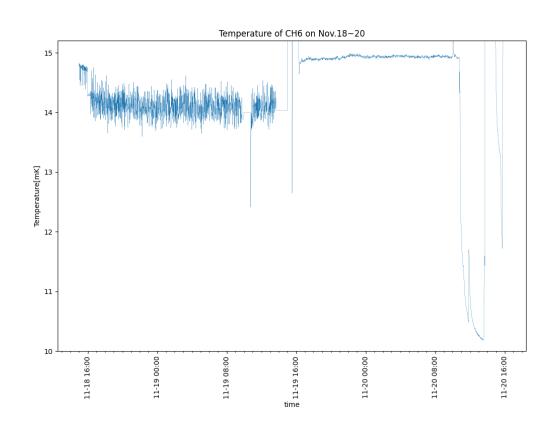
Simulation

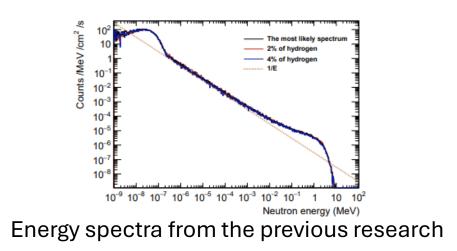

Generated 10⁸ neutron from a surface to inside the sphere using a cosine-law Energy spectra is cited from previous research (Mizukoshi et al., arXiv:1803.09757,2018)

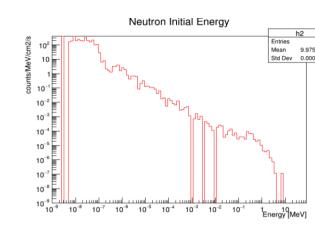
Among these I focused on ambient neutron background

Types of ambient neutron

 $\succ(\alpha, n)$ reaction generated from U/Th chain ➢Spontaneous U fission ► Neutron generated from muon


Shielding material

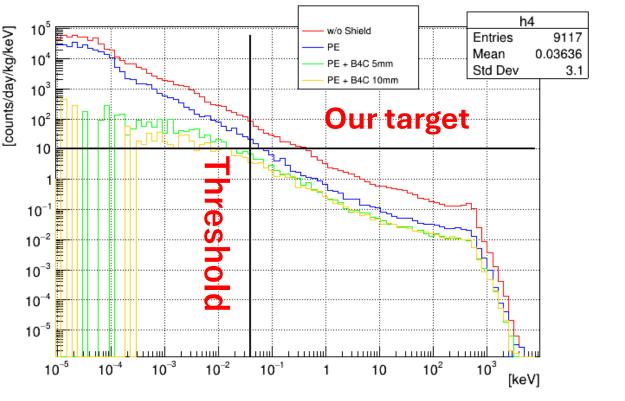

 \geq Polyethylene(PE): slow down the fast neutron to thermal neutron >Boron sheet(B₄C):capture thermal neutron Combining these two can shield both high/low energy Kamioka Cyolab


Dilution refrigerator

Dilution refrigerator(DR) can cool down to ~10mK DR was installed to Kamioka Cryolab in last November and test run was conducted

DR accomplished ~10mK at its lowest

Energy spectra generated on Geant4


5.Result (Comparison of B Thickness)

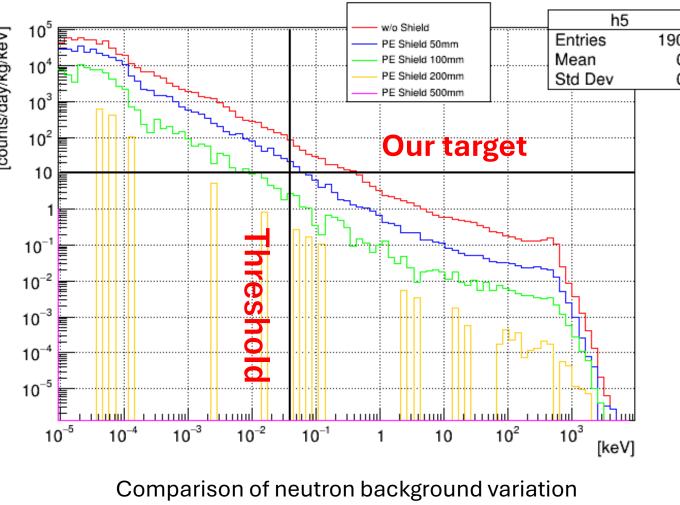
B sheet

- \succ I also compared the influence of B sheet thickness
- Integrated from 40 eV to 1 keV to obtain the total number of events

 \rightarrow It actually captures thermal neutron at least single B sheet is needed

If combined with PE shield, we can accomplish background lower enough **than target**(<10 events/keV/kg/day)

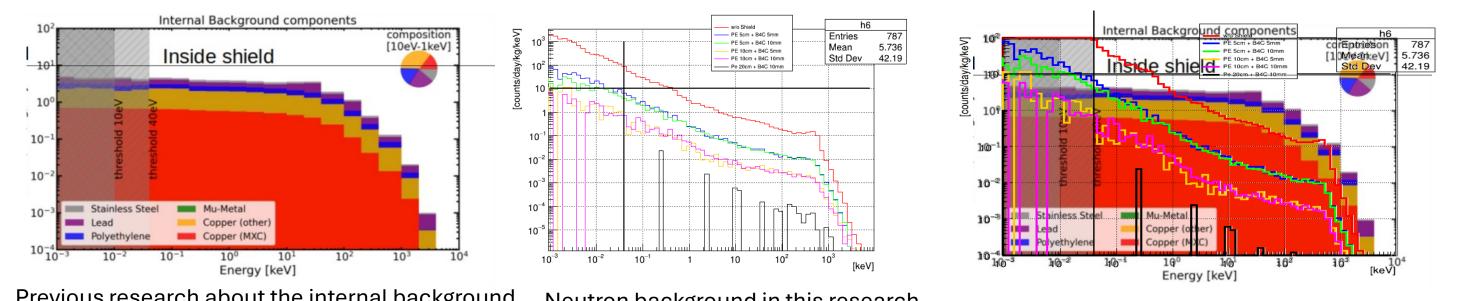
Comparison of neutron background variation with B thickness


Counts/kg/day Types of shield

4.Result (Comparison of PE Thickness)

PE shield

- I compared the background with and without PE shield
- Integrated from 40 eV to 1keV to obtain the total number of events


 \rightarrow 10+cm thickness of PE is **needed** to accomplish the target (<10counts/keV/kg/day)

with B thickness

シールドの種類	Counts/kg/day
w/o Shield	11.4 ± 0.1
PE 5cm	2.15 ± 0.05
PE 10cm	0.27 ± 0.02
PE 20cm	$(9.091 \pm 0.525) \cdot 10^{-2}$
PE 50cm	0

6.Summary & Future Prospect

Setup

w/o Shield	11.4 ± 0.1
PE 5cm	2.15 ± 0.05
PE5cm+B4C5mm	0.936 ± 0.035
PE5cm+B4C10mm	0.74 ± 0.03

7.Reference

R. Anthony-Petersen et al., "First Demonstration of the HeRALD Superfluid Helium Detector Concept," arXiv:2307.11877 [physics.ins-det], 2024. S. A. Hertel et al., "Direct detection of sub-GeV dark matter using a superfluid 4He target," arXiv:1803.09757 [hep-ex], 2019. K. Mizukoshi et al., "Measurement of ambient neutrons in an underground" laboratory at Kamioka Observatory," arXiv:1803.09757,2018

Previous research about the internal background Neutron background in this research

Comparison

Summary

To accomplish the targaet(<10events/keV/kg/day), **10cm PE shield and single B sheet** can decrease the ambient neutron background

Future prospect

- > Simulation with more precise geometry is needed
- > Other background candidates should be taken into account

