CANDLES実験のための⁴⁸Ca同位体濃縮の研究:

大強度Deflection Laserの作製に向けたFP-LDに対する注入同期性能の評価

⁴⁸Caの自然存在比は 0.187%と低いため,崩壊核の増加には同位体濃縮が不可欠.

← Single と Multi はストライプ幅が異なる.

Multi FP-LDは,高い駆動電流を流すことができ 複数モードで発振するために高出力が期待!

← 通常コートとARコートは反射率が異なる

ARコート品は、共振器内のフィードバック光が 少なく,外部光による出力特性の変化が期待!

¥,	LD種類	共振器のミラー部分 コーディング	Typical 電流値	注入DFB波長
	Single FP-LD	< 10%/90%: 通常コート	150 [mA]	406.2 [nm]
	Single FP-LD	< 1%∕ 90%: AR⊐―ト	150 [mA]	406.2 [nm]
	Multi FP–LD	< 10%/90%: 通常コート	475 [mA]	408.3 [nm]
	Multi FP–LD	< 1%∕90%: AR⊐―ト	475 [mA]	408.3 [nm]

5. 評価結果③ (ARコート品 比較)

✤ 増幅ゲイン:入力 [w]に対する出力 [w]の増幅量. (小信号領域における,)

 $\times \frac{1}{2}$

Single FP-LD(ARコート)の方が入力 [mW] 対して, 効率よく増幅して出力する.

入射光の波長に引き込まれ、Slave Laserの自己発振成分が抑制される. この時の自己発振成分の抑圧比をここでは『Contrast比』と呼ぶ.

波長シフトの同期範囲:

(Contrast比 \geq 25 [dB])

3. 評価結果① (Single FP-LD)

Contrast比の電流依存性

← Single FP-LD(通常コート): Contrast比の上昇が周期的.

 \leftarrow Single FP-LD(AR $\neg - \land$): Contrast比が安定的. (増幅器(SOA)に近い挙動)

Single FP-LD(通常コート)は 範囲も狭く,注入同期の調整が困難.

駆動 (Slave) 電流 [mA]

6.まとめ

← 通常コート品は, Single, Multi FP-LD 共に調整難易度が高い.

← ARコート品は, 増幅器(SOA)に近い挙動を示しており, 注入同期の調整が容易.

← Multi FP-LD(ARコート)は, 増幅ゲイン(小信号利得)が小さいために, スロープ効率が小さい.

LD種類	共振器のミラー部分 コーディング	注入DFB波長	注入同期 調整難易度	スロープ効率 [mW/mA]	増幅ゲイン
Single FP-LD	< 10%/90%: 通常コート	406.2 [nm]	\bigtriangleup	1.37	
Single FP-LD	< 1%∕90%: AR⊐ート	406.2 [nm]	0	1.40	25.5
Multi FP–LD	< 10%/90%: 通常コート	408.3 [nm]	×	1.39	
Multi FP–LD	<1%∕90%: AR⊐ート	408.3 [nm]	0	0.63	11.2

結論

Deflection Laserの作製において、Single FP-LD(ARコート)が適している.