

Hadron Physics Group

アクシオン

素粒子標準模型におけるCP対称性の破れ

1.CKM行列に含まれる複素位相: $\delta = O(1)_{PDG2024}$

 $s_{13}e^{-i\delta}$ $V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$ $C_{23}C_{13}$

2.QCDに含まれる θ 項: $|\bar{\theta}| \lesssim 10^{-10}$

カイラルゲージ理論に基づくアクシオン模型とその現象論

竹下 昌之介 広島大学

Working in progress w/ 佐藤 亮介 (大阪大学)

Graduate School of Advanced Science and Engineering Hiroshima University

2025年3月7日 第1回学術変革「地下稀事象」若手研究会@富山大学

ゲージ対称性 SU(2N + 4)₁ × SU(N)₂ とカイラル超場 \overline{F}_a , $\overline{F}_{\overline{a}}$, Aを導入。

	$SU(2N+4)_1$	$\mathrm{SU}(N)_2$	$U(1)_{PQ}$	$\mathrm{U}(1)_q$	$U(1)_R$	$\mathrm{SU}(2N)_{\bar{F}}$
\bar{F}_q			N+1	1	0	
$ar{F}_{ar{q}}$			N+1	-1	0	
A		1	-N	0	-3/(N+1)	1

対称性の破れ

D-flat condition: Affleck, Dine, and Seiberg (1985) $D^{a} = \varphi^{\dagger l} T_{l}^{ak} \varphi_{k} = 0 \longrightarrow 2A^{\dagger}A - \overline{F}_{q} \overline{F}_{q}^{\dagger} - \overline{F}_{\overline{q}} \overline{F}_{\overline{q}}^{\dagger} \propto I_{2N}, \ \overline{F}_{q}^{\dagger} \overline{F}_{q} - \overline{F}_{\overline{q}}^{T} \overline{F}_{\overline{q}}^{*} \propto I_{N}$

対称性の破れのパターン

• $M_{\rm GUT} > M_{\rm PO}$

 $[SU(14)_1 \times SU(5)_2] \times U(1)_{PQ} \times U(1)_q \times U(1)_R$

 $\rightarrow [\mathrm{SU}(14)_1 \times \mathrm{SU}(3)_2 \times \mathrm{SU}(2)_2 \times \mathrm{U}(1)_2] \times \mathrm{U}(1)_{\mathrm{PO}} \times \mathrm{U}(1)_q \times \mathrm{U}(1)_R$

まとめ

$[SU(14)_1 \times SU(5)_2] \times U(1)_{PQ} \times U(1)_q \times U(1)_R$ \rightarrow [Sp(4)₁ × SU(5)_{GUT}] × U(1)_d \rightarrow [Sp(4)₁ × SU(3)_c × SU(2)_L × U(1)_Y] × U(1)_d

- $M_{\rm GUT} < M_{\rm PO}$
- \rightarrow [Sp(4)₁ × SU(3)_c × SU(2)_L × U(1)_Y] × U(1)_d

ランダウポールによる制限

陽子崩壊

フランクスケールまでランタウホールが
現れない条件:
$$\Lambda_{14} \gtrsim 1.3 \times 10^{15} \text{ GeV}$$

 $(f_a \gtrsim 3.4 \times 10^{15} \text{ GeV})$
 $\longrightarrow M_{\text{GUT}} > M_{PQ}$ の場合は除外。

L. Randall and R. Sundrum (1998) G. F. Giudice, M. A. Luty, H. Murayama, and R. Rattazzi (1998)

▶超対称カイラルゲージ理論に基づくアクシオン模型について議論した。

ランダウポールの制限から $M_{GUT} < M_{PO}$ の場合が好まれる。 ▶本模型では、カイラルゲージ理論の非摂動効果によってPQ対称性が破られる。

▶超対称性の性質によってカイラルゲージ理論の非摂動ダイナミクスを 解析的に解くことが出来る。

▶SU(5)大統一模型に適合させ、その現象論について議論した。

Sato and ST in preparation

→ 予期される陽子の寿命は、minimal SUSY SU(5) GUTの場合と同様になる。

アノマリー媒介機構による超対称性の破れ+超対称性のスケールが高い場合、 陽子崩壊探索の制限を回避できる。 $\mathcal{O}(100)$ TeV

Ex.) J. Hisano et al. (2013)