

土肥明 (理研), 古賀一成 (Proxima Technology, Inc.), 上田和茂 (徳山高専) arXiv:2209.05625, JHEP 2023, 107 (2023) / arXiv:2408.10315, Phys. Rev. D 111, 063501 (2025)

BBNと諸問題・本研究の目的

ビッグバン元素合成(BBN):宇宙誕生から20分間の物質進化(図1) $n/p \simeq e^{-1.3 \text{MeV}/T_{\text{F}}} \simeq 1/6 - 1/7$ に freeze out (D 生成前) D bottleneck $T_{
m F}(\lesssim 0.8~{
m MeV}):~n \leftrightarrow p$ の弱い相互作用の freeze-out 温度 BBN freeze-out $D \leftrightarrow n + p$ 発生以降、⁷Li ま decoupling ³He/H での軽元素が瞬時に生成 T/H ⁷Be/H 3 1000 秒を超えると、全軽元 10-10 素が freeze out (BBN 終了) ○ BBN の観測・理論不一致問題 10³ T(keV) ■ ⁴He アノマリー:64 の極金 図 1: BBN で合成される軽元素の割 属欠乏銀河の観測データ 合の時間・温度変化の様子。

Kerr AdS₅ 時空での泡宇宙モデル

■本研究ではより一般的な回転 している BH 時空 (Kerr-AdS₅) 周りの相転移による泡宇宙の モデルを考える。以下の詳しい導 出は Koga et al.(JHEP05(2023)107) を参照。

図 5: Kerr-AdS₅ での相転移と泡宇 宙形成の様子

- ■この場合の泡宇宙の運動方程式は、
- $) = \frac{\Lambda_4}{3} + \frac{\rho_{\mathrm{r},0}}{R^4} + \frac{\rho_{\mathrm{m},0}}{R^3} \frac{1}{R^2} + \frac{\mu}{R^4} + \frac{W}{R^6} + \mathcal{O}(R^{-8})$ と得られ、 $\mu + \rho_{\mathrm{r},0} = M_{-} \left[1 + \left(\frac{a_{-}}{a_{+}}\right)^{2} - a_{-}^{2} \left(\frac{1}{l_{-}^{2}} + \frac{1}{l_{+}^{2}} - \frac{1}{m_{0}}\right) + \frac{(a_{-}^{2} - a_{+}^{2})(l_{-}^{2} - l_{+}^{2})m_{0}}{a_{+}^{2}l_{-}^{2}l_{+}^{2}} \right]$

解析による Y_p の値の更新 (EMPRESS、図2を参照) ■⁷Li 推定値が過剰(⁷Li 問題) ○ 解決候補となる非標準物理過程 余剰次元由来の暗黒放射 レプトン非対称性の効果 ■重力理論の拡張 Axion 等の DM による影響

先行研究(Sasankan+17): 5次元無回転 BH からの暗黒放射で Y_p が上昇することを発見 本研究の目的 泡宇宙シナリオで如何にして ⁴He アノマリーを解決しうる か?BHの回転も考慮し、暗黒放射の軽元素量への影響を明らかにする。

時空の相転移と泡宇宙

■泡宇宙のシナリオでは準安 定な 5 次元 AdS 時空 (偽真 空: False Vacuum) がより安

となる。 a_{\pm} はBHの回転パラメータ、 $\rho_{r,0}, \rho_{m,0}, \mu$ はそれぞれ放射、物質、暗黒放射の成分である。 ■5次元由来の暗黒放射の影響を直接計算するのは複雑なた め、あたかも追加のニュートリノが存在するかのように有 効的な世代数 N_{eff} を求め、その影響を取り入れた。

■ 得られた N_{eff} を元に Mathematica の公開コード PRIMAT (Pitrou+18) を用いて BBN 計算を行った。

BHの質量・回転による軽元素量の影響

 $M_{+}/10^{-4} a_{+}/10^{-3} M_{-}/10^{-4} a_{-}/10^{-3} N_{eff}$ 9.985003.25120 9.98593 3.25105 3.20 $3.13998 \quad 9.98593$ 3.13983 3.00 9.98500 3.08283 9.98593 3.08268 2.90 9.98500 2.84260 9.98593 2.84247 2.509.98500 2.77930 9.98593 2.77917 2.409.98500 9.98500 2.74705 9.98593 2.74692 2.35 9.98500 2.71443 9.98593 2.71430 2.30 2.74692 2.30 74705 9.98679 9.98585 2.64785 2.20 $2.64798 \quad 9.98594$ 9.98500 2.74692 2.20 9.98756 $.74705 \quad 9.98850$ 2.74692 2.30 .74705 9.98679 9.98585 2.74692 2.209.98756 2.74705 9.98850

定な真真空 (True Vacuum) へ 相転移するトンネリングの 過程を考える。(図3) ■偽真空中に真真空で満たさ れた泡が生じ、それが広が ることで時空の相転移が進 む。(図4)

図 3: 準安定な偽真空はトンネリン グによってより安定な真真空へ崩 壊する

図 4:5次元の相転移では、相転移の時空の境界面(泡)は4次元の自由度 を持つ。

■ 2つの時空の境界面上での接続条件から泡の運動方程式 を得ることができ、簡単な場合として球対称な5次元

図 6: N_{eff} に対する BH の質量 M_+ とスピンパラメータ a_+ の依存性。 $m_0 = 347000, l_+ = 7, l_- = 7/2$ で固定。

BHの質量 $\rightarrow N_{\text{eff}}$ を小さくする。回転 $\rightarrow N_{\text{eff}}$ を大きくする。 \Rightarrow BH の質量と回転は、 N_{eff} に対して反相関

■ Y_p: N_{eff} 小で小さくなる (R(t) 小より D 生成が遅れるため) \Rightarrow BH の質量・回転の不定性で ${}^{4}\text{He}$ アノマリーを解決可能 ■⁷Li: 泡宇宙シナリオによる暗黒放射ではほぼ変化しない \Rightarrow ⁷Li 問題解決は困難(他の現象やシナリオも検討) まとめ・課題

Schwarzchild BH 時空が相転移する場合、

$rac{R^2}{R^2} = -rac{1}{R^2} + rac{\Lambda^{(4)}}{3} + rac{8\pi M_+ l_+ - M_- l_-}{2\pi^2 R^4}$ と得られる。

 $M_{\pm}, \Lambda^{(4)}, l_{\pm}, R$ はそれぞれ BH の質量パラメータ、宇宙項、AdS 半径、泡の半径である。

- ■この時空の相転移面(泡)の運動方程式が Friedman 方程式 と同じ形であることから、泡を4次元のde Sitter 時空とみ なすのが泡宇宙形成のシナリオである。
- ■特に上式3項目が放射に対応する項となっており、5次元 BHの質量が4次元上では放射のように見えるということ を表している。この(暗黒)放射を本研究において軽元素 合成に影響を与える要因として考えている。

■ 5 次元回転 BH 時空 (Kerr AdS₅) 周りの偽真空泡としての宇 宙創生シナリオの下で BBN の数値計算を行った。 ■ 5次元 BH の質量と回転は、N_{eff} に対して反相関であり、 ⁴Heアノマリーを解決する手がかりとなる可能性がある。 ■今後は泡宇宙による宇宙創生モデルの精密化、他の現象と の組み合わせなどにより、Li問題等を含めた宇宙論の諸問 題にアプローチする。