加速器質量分析による極微量放射性核種の分析法確立

筑波大学 数理物質系/放射線・アイソトープ地球システム研究センター 坂口 綾

クリーン環境整備(改修前)

クリーン環境整備(改修後)

学術変革 横串としての極微量放射性核種分析

学術変革 横串としての極微量放射性核種分析 今後の施設整備予定 作業日程 1. クリーンフード3の設置 3/13機器設置·実験室清掃 2. $4/2 \sim 4/4$ 3. 清浄度検査 4/7 クリーン度目標値 粒子数/f³ 1. クリーンフード エリア <1000←10000 2. クリーンベンチ < 1003. クリーンドラフト < 104. ドラフト <1000←10000

学術変革 横串としての極微量放射性核種分析

難溶解性試料、高マトリクス試料中の極微量 放射性核種測定法確立(クリーン技術確立)

• KamLAND 東北大

* PENフィルムやBis-MSBに含まれるU, Th分析

・CANDLES 阪大・徳島大

* CaF₂の材料やCaF₂そのものに含まれるU, Th分析

•暗黒物質検出 横浜国立大

*液体シンチレーターに含まれるU, Th分析

·暗黒物質検出 名古屋大開始予定

*フッ素樹脂(ステンレス)に含まれるU, Th分析⁶

極微量²¹⁰Pbの分析法確立 -人新世紀年代測定法への応用-

新しい地質時代区分—人新世

	1			
~5億2400万年	先カンブリア時代			La Steller
5億2400万年~ 2億5000万年	古生代			
2億5000万年~	中生代	三畳紀		https://www.euronews.com/green/2021/09/24/who-air-pollution-is-worse than-we-thought-but-there-s-hope-we-can-fix-it
		ジュラ約	5	
		白亜紀		
6600万年~ 258万年	新生代	第三紀		
258万年~		第四紀	更新世	
「万1700年				https://jss1.jp/column/column_34/
1万1700年			完新世	いつまでナウマンゾウや縄文時代と一緒の時代区分 なんだよう!?
???~			人新世	新たな時代区分の設定が 必要となっている (Steffen et al. 2015: Water et al., ⁸ 2018)

サンゴ骨格や堆積物を用いた人新世の研究

²³⁶U導入履歴をサンゴから復元した例

Nomura et al., JGR Oceans, 2016

9

²¹⁰Pb年代測定

²¹⁰Pb年代測定

- C: Pb-210濃度(Bq/g)
- t:時間(y)
- Ⅰ: 壊変定数(1/y)
- d: コア深度(cm)
- S: 成長速度 (cm/y)

*海洋への年間Pb-210降下量(Bq/cm²/y) は一定とする *Pb-210半減期 22.2年

サンゴ試料中の微量²¹⁰Pb測定

サンゴ試料中の²¹⁰Pb濃度:数mBq/g(約10⁻¹⁶g/g)

	α 線測定	γ線測定	ICP-MS
測定法			T ジレント・テクノロジー株式会社 提供
問題点	子孫核種 ²¹⁰ Po(半減 ^{期:138日)} を使用 測定まで数か月 ~数年 測定に数週間	²¹⁰ Pbの γ 線が46 keV 検出効率が悪い 環境BGが大きい ^{環境BG} ・コンプトン効果 ・宇宙放射線	分子イオンの妨害、 安定 ²⁰⁸ Pbからのテーリ ング 検出効率が悪い 12

加速器質量分析装置(AMS)による²¹⁰Pb測定

従来の測定法の問題点を解消できる可能性

- ²¹⁰Pbの原子数を直接測定
 子孫核種の成長や放射平衡を待たなくて良い
- ・妨害同重体分子イオンや主要安定同位体からの 妨害低下
- 数mBq/g (約10⁻¹⁶ g/g)の²¹⁰Pbを 試料量数gで高感度で測定可能

→測定条件の大半が未確立

→サンゴ(環境)試料の処理法が未確立

本研究の目的

人新世の環境試料(特にサンゴ試料)の 年代測定のための²¹⁰Pb測定をAMSにて行う → さまざまな試料中の²¹⁰Pbに応用

I. サンゴ試料から の鉛の分離法の検討

Ⅱ. AMSのための鉛化合物作製法の検討

Ⅲ. AMSの 測定条件の検討

I. サンゴ試料からの鉛分離法の検討

樹脂による鉛の回収・主成分の除去 まとめ

樹脂	溶離溶液	鉛の回収率 [%]	主成分の除去
AG® 1-x8	6 M HNO ₃	103 ± 1	0
AG [®] 1-x8	超純水	97.1 ± 1.4	0
Pb-レジン	超純水	61.7 ± 0.7	0

サンゴ試料からの鉛の分離 AG® 1-x8 を用いる

II.AMSのための鉛化合物作製法の検討

AMSでの試料のイオン化のメカニズムは 現在詳細に解明されていない

酸化物、フッ化物の鉛化合物を作製 α Pb0、 β Pb0、Pb₃0₄、PbC0₃、Pb(NO₃)₂、PbF₂

II. AMSのための鉛化合物作製法の検討

鉛化合物作製の結果 まとめ

作製目的化合物	作製された化合物	本研究中での呼称
αPbO	Pb ₃ O ₄	Pb ₃ O ₄
βΡbΟ	βΡbΟ	βPbO
$Pb_{3}O_{4}$	$Pb_3O_4 + \beta PbO$	Pb ₃ O ₄ '
PbCO ₃	PbCO ₃	PbCO ₃
$Pb(NO_3)_2$	$Pb(NO_3)_2$	$Pb(NO_3)_2$
PbF ₂	PbF ₂ +不純物	PbF ₂ '

まとめ

人新世の環境試料(特にサンゴ試料)の
 年代測定のための²¹⁰Pb測定をAMSにて行う
 → さまざまな試料中の²¹⁰Pbに応用

- I. サンゴ試料からの鉛の分離法の検討 AG®1-x8にて鉛の回収および主成分の除去の達成
- Ⅱ. AMSのための鉛化合物合成法の検討

β Pb0, Pb₃0₄, Pb₃0₄', PbC0₃, Pb(N0₃)₂, PbF₂' が作製 今後の予定

Ⅲ. AMSの各部における条件の検討

各研究グループの極低核種測定技術確立サポート