2025 / 03 / 07 @ 第10回「極低放射能技術」研究会, 富山

ミューオニウム反ミューオニウム転換で探る ニュートリノ質量模型

T. Fukuyama, Y. Mimura, & YU, PRD105, 015026 (2022).T. Fukuyama, Y. Mimura, & YU, PRD106, 055041 (2022).

目次

- 1. ミューオニウム反ミューオニウム転換 (10 slides)
- 2. ニュートリノ質量模型 (7 slides)
- 3. ニュートリノレス2重ベータ崩壊との関連 (7 slides)

4. まとめ (1 slide)

レプトンフレーバー非保存過程

<u>レプトンフレーバー数</u> 3つ: 電子数(L_e), ミュー数(L_μ), タウ数(L_τ) 参考: レプトン数: $L = L_e + L_\mu + L_\tau$

- ・標準模型 (SM) の枠組みで レプトンフレーバーは 保存量

 $\Delta m^2_{\tilde{u}\tilde{e}}$

- 多くの "SMを超える模型" が CLFV を予言 (例: SUSY)
- (ニュートリノ混合の寄与は小) 予想される崩壊分岐比 Br($\mu \rightarrow e\gamma$) < 10⁻⁵⁴
- ▶ "世代"の発見以降様々なCLFVモードが探索(いずれも未発見)

ニュートリノによるCLFV

2/25

✓ ニュートリノ質量があると loopで $\mu \rightarrow e\gamma$ が生成 → しかし <u>GIM機構で抑制</u>

新物理とCLFV

✓ニュートリノ振動は既知

- ・

 レプトンフレーバー保存をありがたがる理由はない
- ・むしろ積極的にフレーバーを触ってニュートリノの質量や混合を説明したい
- ✓ 世代を混ぜるような新粒子を導入すると

(特別な理由がない限り) CLFVが出現

3/25

CLFV探索は素粒子模型に強い制限とヒントを与える

✓加速器で直接作れないような新粒子の影響も間接的に検出可 例:現状のµ→ey 探索は(結合~0(1)として) 0(10⁵) TeVの粒子探索に相当

ミューオンを用いたCLFV探索

5/25 Muonium(Mu)-to-Antimuonium(Mu) 転換

Pontecorvo (1957), Weinberg & Feinberg (1961).

- $\Delta L_{\mu} = -\Delta L_{e} = 2$ でレプトンフレーバーを破る(LFV)過程 $\Delta L_{\mu} = -\Delta L_{e} = \pm 1$ のLFVは $\mu \rightarrow e\gamma, \mu \rightarrow 3e$ などで厳しく制限 新粒子がフレーバー数を2つ運ぶ場合には Mu-to-Mu が優勢
- <u>J-PARC</u> (日本, N.Kawamura *et al.*, JPS Conf. Proc. 33, 011120 (2021)) および <u>CSNS</u> (中国, MACE collab.) で将来実験が計画 P < 8.3 × 10⁻¹¹ (PSI) □ <u>0(10⁻¹⁴)</u> (CSNS)

6/25

なぜ今 Mu-to-Mu 転換?

- Mu-to-Mu 転換の理論は1990年代に確立 e.g. W.S.Hou & G.G.Wong,
 - e.g. W.S.Hou & G.G.Wong, PLB357, 145 (1995); K.Horikawa & K.Sasaki, PRD53, 560 (1996).
- •現状最も強い制限 · · · MACS実験 (PSI, 1999)

<u>P < 8.3 × 10⁻¹¹</u> L. Willmann *et al.*, PRL**82**, 49 (1999). およそ四半世紀が過ぎ...

➤ 高強度ミューオン線 (10⁸/s) が利用可能に
□ ン ミューオンCLFVの精度向上が望める

▶ 多くの理論模型が提案されてきたが Mu-to-Mu 転換の制限が強くなる(発見される)とどうなるか あまり議論されてこなかった

└─〉 今こそ <u>Mu-to-Mu 転換</u>を再考しよう !!

T/25
MuとMuの混合

$$|\psi(t)\rangle = \alpha(t)|Mu\rangle + \beta(t)|\overline{Mu}\rangle$$

 $i\frac{\partial}{\partial t}\begin{pmatrix} \alpha\\ \beta \end{pmatrix} = \begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12}\\ \mathcal{M}_{21} & \mathcal{M}_{22} \end{pmatrix} \begin{pmatrix} \alpha\\ \beta \end{pmatrix}$
 $(CPT 対称性 \Rightarrow \mathcal{M}_{22} = \mathcal{M}_{11})$
新物理による混合
 $\mathcal{M}_{ij} = \mathcal{M}_{ij} - i\Gamma_{ij}/2$
 $\mathcal{M} = \mathcal{M}^{\dagger}, \Gamma = \Gamma^{\dagger}$
対角要素の縮退 \hookrightarrow (新物理が微小であっても)状態は大きく混合
 $\begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12}\\ \mathcal{M}_{21} & \mathcal{M}_{11} \end{pmatrix}$
 $\lambda_{+} = \mathcal{M}_{11} + \Delta \mathcal{M}$
 $\lambda_{-} = \mathcal{M}_{11} - \Delta \mathcal{M}$
 $\Delta \mathcal{M} = \sqrt{\mathcal{M}_{12}\mathcal{M}_{21}}$
 $(JI) = \mathcal{M}_{11} - \mathcal{M}_{12}$

有効相互作用

cf. R. Conlin & A. A. Petrov, PRD102, 095001 (2020).

8/25

$$\begin{aligned} -\mathcal{L}_{\mathrm{Mu}-\overline{\mathrm{Mu}}} &= \sum_{i} \frac{G_{i}}{\sqrt{2}} Q_{i} \quad G_{i} : \text{ shaft be set for } \\ Q_{1} &= [\overline{\mu}\gamma_{\alpha}(1-\gamma_{5})e] [\overline{\mu}\gamma^{\alpha}(1-\gamma_{5})e] \quad \text{LL vector} \\ Q_{2} &= [\overline{\mu}\gamma_{\alpha}(1+\gamma_{5})e] [\overline{\mu}\gamma^{\alpha}(1+\gamma_{5})e] \quad \text{RR vector} \\ Q_{3} &= [\overline{\mu}\gamma_{\alpha}(1-\gamma_{5})e] [\overline{\mu}\gamma^{\alpha}(1+\gamma_{5})e] \quad \text{LR vector} \\ Q_{4} &= [\overline{\mu}(1-\gamma_{5})e] [\overline{\mu}(1-\gamma_{5})e] \quad \text{LL scalar} \\ Q_{5} &= [\overline{\mu}(1+\gamma_{5})e] [\overline{\mu}(1+\gamma_{5})e] \quad \text{RR scalar} \end{aligned}$$

※ 任意の4フェルミ演算子([μΓe][μΓ'e])は これら5つの演算子の線形結合で表現可能(: Fierz 変換)

現状の実験的制限 (PSI)

Mu-to-Mu 実験のこれまでとこれから

tree図による Mu-to-Mu 転換

▶ 模型の例 (PRD105, 015026 (2022))

G_i:誘起される有効演算子

11/25

	-	模型	G_1	G_2	G_3	G_4	G_5
	(Type-I $+$ II hybrid seesaw	\checkmark	_	_	_	_
++	~	LR model with $SU(2)_R$ triplet	_	\checkmark	—	—	_
	U	Dilepton gauge boson	_	—	\checkmark	—	—
	$\left(\right)$	Inert Higgs doublet	_		\checkmark	\checkmark	\checkmark
0	~	R-parity violating SUSY	—	—	\checkmark	—	—
		Neutral flavor gauge boson	\checkmark	\checkmark	\checkmark	—	—

 $\checkmark : G_i/G_F \sim O(10^{-3})$ が許容

ニュートリノ質量模型

✓ ニュートリノ質量の小ささを自然に説明
 ✓ ニュートリノ振動を再現するフレーバー混合

▶ シーソー模型

ニュートリノに重い粒子を結合させてニュートリノが軽くなる模型

 例: <u>Type-I シーソー模型</u>: SU(2) singlet fermion (右巻きニュートリノ)
 ループで Mu-to-Mu 転換を作るが 他の制限を考慮すると G₁/G_F < O(10⁻⁸)...
 <u>Type-II シーソー模型</u>: SU(2) triplet scalar → doubly-charged スカラーが レプトンフレーバーを混ぜる
 ● 輻射ニュートリノ質量模型

ループによる輻射補正でニュートリノ質量が現れる模型

例: Zee-Babu模型:

: Type-IIだけで M_v を説明すると Mu-to- \overline{Mu} 転換は次世代実験で検出できるほど大きくできない

例2: Zee-Babu模型

A.Zee, PLB93, 389 (1980); A.Zee, NPB264, 99 (1986);K.S.Babu, PLB203, 132 (1988);K.S.Babu & C.Macesanu, PRD67, 073010 (2003).

◆ 輻射ニュートリノ質量模型のひとつ

2重ループでニュートリノ質量を生成

 $M_{\nu} = \frac{1}{M_{0}} f M_{e} g^{*} M_{e} f^{T} \qquad \frac{1}{M_{0}} = \frac{\mu_{hhk}}{48\pi^{2} \max(m_{h}^{2}, m_{k}^{2})} \tilde{I}$ $\uparrow \qquad M_{e} = \operatorname{diag}(m_{e}, m_{\mu}, m_{\tau})$ rank-2 ($m_{\text{lightest}} = 0$) : f は反対称行列

例3: カクテル模型

 $H_{1,2}^+$: mixed state of η^+ & h^+

ニュートリノレス2重β崩壊 (0ν2β)

 $(Z, N) \rightarrow (Z + 2, N - 2) + 2e^{-1}$

・レプトン数を破る(LNV)過程

ニュートリノレス2重β崩壊 (0ν2β)

19/25

• doubly-chargedスカラーによる寄与

Mu-to-Mu と共にdoubly-chargedスカラーの検証に有効 (Majoranaニュートリノ質量が小さい場合も 0ν2β が起こり得る)

20/25 Zee-Babu模型とカクテル模型での 0ν2β

• カクテル模型 M. Gustafsson, J.M. No & M.A. Rivera, PRD**90**, 013012 (2014). "カクテル図"を通じた 0ν2β

21/25 two-higgs-doublet 模型 + two singlets

		l	e_R	Φ_1	Φ_2	h^+	<i>k</i> ⁺⁺
$SU(2)_L \times U$	$(1)_{Y}$	$\left(2,-\frac{1}{2}\right)$	(1 ,−1)	$\left(2,-\frac{1}{2}\right)$	$\left(2,-\frac{1}{2}\right)$	(1 , 1)	(1,2)
Type I/Y Type II/X	Z ₂ -charge A	+ +	+	-	+ +	_	+++
Type I/Y Type II/X	Z ₂ -charge B	+++	+	_	+++	+ +	++
$\begin{pmatrix} & (1) Z_2 - c \\ & \ell \end{pmatrix}$	charge A: Liu-0 <i>ℓh</i> ⁺ 禁止 harged higgs a	Gu 模型 $\Phi_1 \Phi_2$ η+とレプト	z. ん+ 許可 ンの湯川	Liu & PH. J ロン 結合をなく ⁻	Gu, NPB91 > $M_{\nu} \propto M$ すと カクテル	5 (2017) : M _e gM _e レ模型に:	206. 帰着)
$\begin{pmatrix} 2 \\ 2 \\ 2 \\ \ell \\$	charge B: Zee ℓh ⁺ 許可	-Babu 模型	╝ h⁺ 禁山		$M_{\nu} \propto f$	^F M _e g*M	$l_e f^T$
$\checkmark Z_2$	2-charge B ($\Box \Phi_1 \Phi_2 h$	ーーーーー h ⁺ 項をsc AとB0	oft-break Dhybrid [;]	 ing項とし を考えるこ	 て加えて ことがで	こ さる

✓ 純粋なLiu-Gu模型とZee-Babu模型では 2-loop図で M_v が生成

✓ ただし 中間的な模型では 1-loop図で M_{ν} が生成 ("Zee模型" と類似) (中間的な場合)

✓ 小さな f を仮定すると $M_{\nu}^{ZB} \ll M_{\nu}^{Zee}$ \int $M_{\nu} \simeq M_{\nu}^{Zee} + M_{\nu}^{LG}$ (g, f それぞれについて線形)

23/25

カクテル図による $0\nu 2\beta$

24/25

Mu-to-Mu 転換

: ニュートリノ振動パラメータの再現と他のCLFV探索の制限を回避しつつ, $0\nu 2\beta$ と Mu-to-Mu の両方が近い将来に検出可能となるパラメータが存在

まとめ

● Mu-to-Mu 転換

- ✓ $\Delta L_{\mu} = -\Delta L_{e} = 2$ のCLFV過程
- ✓ 標準模型を超える模型のレプトン構造に対する良い短針
- ✓ 日本と中国で将来実験が計画中
- ▶ 多くの素粒子模型について Mu-to-Mu 転換が与える影響を調べた T. Fukuyama, Y. Mimura, & Y. Uesaka, PRD105, 015026 (2022).
- ➤ ニュートリノ質量模型との関連が興味深い (LFVを起こすdoubly-chargedスカラーと相性が良い)
- ➤ Zee-Babu模型ではMu-to-Mu 転換を近い将来見つけられる可能性あり

模型	Mu -to- Mu	$0\nu 2\beta$
Zee-Babu	大	/]v
カクテル	/]\	大

中間的な模型では両方 大 が可