位相欠陥周りのゼロモードの再考察

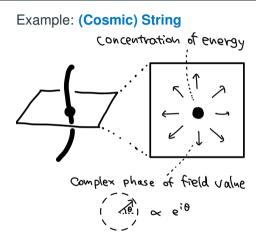
Revisiting the Role of Zero Modes around Topological Solitons

青木隆文 Takafumi Aoki

東京大学理学系研究科物理学専攻

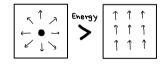
ICRR 理論グループ

What is "Topological Soliton"?



(String made of complex scalar with $\mathrm{U}(1)$ symmetry)

- Stationary point of the energy (or the action).
- $\bullet \ \ \text{Not a global minimum} \ \ \to \ \ \ \text{Unstable?}$



 Stable due to "topological stability":
 Winding of the field around the string cannot be deformed continuously.

Variety of Topolocigal Solitons

Topological solitons with various dimensionality exist.

• Domain wall

String

space 1-dim + time 1-dim

Monopole

space 0-dim + time 1-dim

Instanton

space 0-dim + time 0-dim

Zero Modes around Solitons

Zero mode: Field oscillation $\phi^{(0)}$ which costs no energy (or action).

$$E[\phi + (\text{const}) \times \phi^{(0)}] = E[\phi]$$

(ϕ : soliton configuration, $\phi^{(0)}$: zero mode)

Localized (decreasing at far away from the soliton) zero modes are important.

(No such mode around trivial vacuum because their spatial dependence costs energy.)

Boson localized zero modes:

Transformation of the soliton which cost no energy (translation, rotation, ...).

Fermion localized zero modes:

There often exist zero modes of fermions interacting with the soliton.

$$E[\phi, \psi \propto \psi^{(0)}] = E[\phi, \psi = 0]$$

Impact of Fermion Zero Modes

• Fermion zero modes prevent instanton effect:

Path integral around the soliton vanishes due to fermion zero modes.

$$Z \propto \int \mathcal{D}\psi \, e^{-E[\psi]} \propto \int \mathrm{d}(\mathrm{zero}\,\mathrm{mode}) \times (\mathrm{const}) = 0$$
.

Instanton effects on physics vanishes when fermion zero modes are present.

Superconduction along string:

Fermion zero modes localized in (x, y) + String direction z + Time t

 \rightarrow Massless fermion along the string.

Superconducting string

Fermion Zero Modes around Instantons

Effects of fermion zero modes are captured by fermion lines emanating from instanton.

• Case 1: SU(N) gauge theory with a **massless** N-plet Dirac fermion $\Psi = (\psi_L, \psi_R)$.

There exist fermion zero modes.

• Case 2: SU(N) gauge theory with a **massive** N-plet Dirac fermion $\Psi = (\psi_L, \psi_R)$.

Due to the mass, zero modes in Case-1 are not zero modes now.

$$E[A, \Psi \propto \Psi^{(0)}] \neq E[A]$$

(A: instanton configuration of gauge field, $\Psi^{(0)}$: zero mode in massless case)

Our Work

with M. Ibe, S. Shirai and K. Watanabe

Strong CP Problem and Axion

Strong CP Problem

One of free parameters of Standard Model, θ_{QCD} , is **very near to a special point of the theory**. (Strong force has CP symmetry when $\theta_{QCD} = 0$. Why $|\theta_{QCD}| \lesssim 10^{-10}$?)

- Axion: attractive solution to the strong CP problem.
- Axion mass is predicted in a model-independent way.
 - 1. Axion mass is dynamically generated (\supset instantons).
 - 2. To align $\theta_{QCD} \rightarrow 0$, axion dynamics is **dominated by strong force**.
 - 3. Mass is basically irrelevant to small-scale physics.

Axion Mass Enhancement by Small-scale Physics?

• Axion mass is **enhanced by instantons in hidden gauge sector** in a toy model.

[P. Agrawal and K. Howe (2017). C. Csáki, M. Ruhdorfer and Y.Shirman (2020)]

Q. Axion mass enhancement in theoretically "nice" models?

 \rightarrow Impact on search strategy and relaxation of theoretical subtlety.

Our target: A model by M. Redi and R. Sato (2016)

Axion on this line

Axion hare?

Axion mass

Coupling to 5M particles

The model is partly **similar** to the toy model of axion mass enhancement.

→ Naively, axion mass enhancement.

Result: **NO axion mass enhancement** due to a symmetry arising simultaneously when solving the strong CP problem in a "theoretically-nice" ways.

(Fermion zero modes from instantons cannot be closed due to the symmetry!)

Conclusions

- Topological solitons are "topologically stable."
 - → Domain walls, strings, monopoles, instantons, . . .
- There exist **boson** / **fermion zero modes** around solitons.
- Fermion zero modes have drastic impacts.
 - → Superconductivity along string, Suppression of instanton effects, ...
- Application: We have found that axion mass is not enhnaced in a theoretically "nice" model which looks similar to the toy model in which axion mass is enhanced.

BACKUP

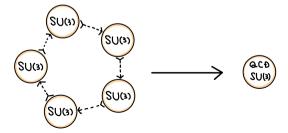
Impact of Hidden Dynamics

Axion Mass Enhancement?: →Search strategy. Relaxing a theoretical subtlety.

<u>Product group model</u>: Gauge $[SU(3)]^{n_s}$ symmetry with n_s axions (by hand).

$$\mathcal{L} = \sum_{i=1}^{n_s} \left[-\frac{1}{4} F_i F_i + \left(\theta_i + \frac{a_i}{f_i} \right) \frac{g_i^2}{32\pi^2} F_i \tilde{F}_i \right] + (\text{scalars for symmetry breaking})$$

Bi-fundamental scalars break gauge symmetry: $[SU(3)]^{n_s} \rightarrow SU(3)_{QCD}$



Impact of Hidden Dynamics

Axion Mass Enhancement?

- 1. Small instanton effects from each $SU(3)_i$: $\Delta V(a_i) \propto -v^4 \exp\left(-\frac{8\pi^2}{g_i^2(v)}\right) \cos\left(\frac{a_i}{f_i}\right)$
- 2. Matching of couplings: $\frac{1}{g_{\text{QCD}}^2(v)} = \frac{1}{g_1^2(v)} + ... + \frac{1}{g_{n_s}^2(v)}$

Axion mass enhancement by large couplings of $SU(3)_i$.

[Agrawal & Howe (2017), Csaki et al (2020)]

The Simplest Composite Axion Model

An Example: The Simplest Composite Axion Model [Choi & Kim (1985)]

New fermions

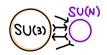
	SU(N)	$SU(3)_{QCD}$
ψ_1	N	<u>3</u>
ψ_1'	N	1
ψ_2 ψ_2	N	3
ψ_2'	N	1

Maximal flavor symmetry for (3+1)-pairs of (N, \overline{N}) :

(in vanishing coupling limit of $SU(3)_{QCD}$)

$$\mathbf{U(4)}_{N} \times \mathbf{U(4)}_{\bar{N}} = \mathbf{SU(4)}_{V} \times \mathbf{U(1)}_{V} \times \mathbf{SU(4)}_{A} \times \mathbf{U(1)}_{A}$$

$$\mathbf{SU(3)}_{QCD} \qquad \mathbf{U(1)}_{PQ}$$



PQ-breaking scale = SU(N) dynamical scale "Dimensional transmutation"

The Simplest Composite Axion Model

An Example: The Simplest Composite Axion Model [Choi & Kim (1985)]

New fermions

	SU(N)	$SU(3)_{QCD}$
ψ_1 ψ'_1	N	3
ψ_1'	N	1
ψ_2	N	3
ψ_2 ψ_2'	N	1

More on Symmetries

$$\mathbf{U(4)}_{N} \times \mathbf{U(4)}_{\bar{N}} = \mathbf{SU(4)}_{V} \times \mathbf{U(1)}_{V} \times \mathbf{SU(4)}_{A} \times \mathbf{U(1)}_{A}$$

$$\cup \qquad \qquad \cup$$

$$\mathbf{SU(3)}_{QCD} \qquad \qquad \mathbf{U(1)}_{PQ}$$

- $U(1)_A$ is SU(N)-anomalous, nullifying SU(N) θ -angle.
- ullet Spontaneously broken $SU(4)_A$ yields 15 would-be Nambu-Goldstone bosons.

QCD colors:
$$15 = 8 \oplus 3 \oplus \bar{3} \oplus 1$$

The Simple Model

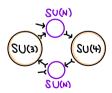
	SU(N)	SU(3) _{QCD}
ψ_1	N	3
$\psi_1 \\ \psi_1'$	N	1
ψ_2	N	3
ψ_2'	N	1

 $U(1)_{PO}$ is imposed by hand.

A Model Addressing the Quality Problem

[M. Redi & R. Sato (2016)]

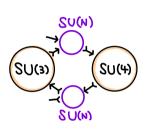
	$SU(N)_{ST2}$	SU(3) _W	$SU(N)_{ST1}$	SU(4) _W
ψ_1	N	3		
ψ'_1	N	1		
ψ_2		3	N	
ψ_2'		1	N	
ψ3			N	4
ψ_4	N			4



 $U(1)_{PO}$ is accidental.

Model – Symmetries

	$SU(N)_{ST2}$	SU(3) _W	$SU(N)_{ST1}$	SU(4) _W
ψ_1	N	3		
ψ_1'	N	1		
ψ_2		3	N	
ψ_2 ψ_2'		1	\overline{N}	
ψ_3			N	4
ψ_4	N			4



Flavor symmetry of $SU(N)_{ST1} \times SU(N)_{ST2}$ dynamics:

$$\mathrm{U}(4)_1^N \times \mathrm{U}(4)_1^{\bar{N}} \times \mathrm{U}(4)_2^N \times \mathrm{U}(4)_2^{\bar{N}} \supset \mathrm{SU}(3)_{\textcolor{red}{\mathbf{W}}} \times \mathrm{SU}(4)_{\textcolor{red}{\mathbf{W}}} \times \left[\mathrm{U}(\mathbf{1})\right]^6$$

- 1. Two U(1)'s are anomalous w.r.t. $SU(N)_{ST1} \times SU(N)_{ST2}$, aligning their θ angles.
- 2. The other $[U(1)]^4$: $U(1)_{PO}^{(SSB)} \times U(1)_1 \times [U(1)]^2$ (:anomalous)

Model - Spontaneous Breaking

Fermion Condensations

 $SU(3)_{W}$, $SU(4)_{W}$ couplings $\rightarrow 0$.

Then, $[SU(N)_{ST}]^2$: independent vector-like theories.

$$U(4)_1^N \times U(4)_1^{\bar{N}} \to [U(4) \text{ subgroup}]$$

$$U(4)_2^N \times U(4)_2^{\bar{N}} \to [U(4) \text{ subgroup}]$$

	$SU(N)_{ST2}$	SU(3) _W	$SU(N)_{ST1}$	SU(4) _W	U(1) _{PQ}
ψ_1	N	3			1
ψ_1'	N	1			-3
ψ_2		3	N		1
ψ_2'		1	\overline{N}		-3
ψ_3			N	4	0
ψ_4	N			4	0

Gauge symmetries: $SU(3)_{W} \times SU(4)_{W} \rightarrow SU(3)_{QCD}$: diagonal subgroup

Global symmetries: Broken $[U(4)]^2 = [U(1)]^2 \times [SU(4)]^2 \supset U(1)_{PQ}$

$$\begin{split} ([SU(N)_{ST}]^2\text{-anomalous}\;[U(1)]^2) \\ &+ (15\;\text{massive gauge bosons}) \\ &+ (\mathbf{15} = \mathbf{8} \oplus \mathbf{3} \oplus \mathbf{\bar{3}} \oplus \mathbf{1}\;\mathbf{)} \end{split}$$

Model – Symmetries

Accidental $[\mathrm{U}(1)]^4$ Global Symmetry

$$U(4)_1^N \times U(4)_1^{\bar{N}} \times U(4)_2^{\bar{N}} \times U(4)_2^{\bar{N}} \supset SU(3)_{\textcolor{red}{W}} \times SU(4)_{\textcolor{red}{W}} \times \begin{array}{c} U(1)_{PQ} \times U(1)_1 \\ \text{(anomalous)} \end{array} \times U(1)_2 \times U(1)_3$$

	$SU(N)_{ST2}$	$SU(3)_{W}$	$SU(N)_{ST1}$	$SU(4)_{\overline{W}}$	$U(1)_{PQ}^{(SSB)}$	$U(1)_1$	$U(1)_2$	$U(1)_3$
ψ_1	N	3			1	1	1	1
ψ_1'	N	1			-3	1	-3	1
ψ_2		3	N		1	1	-1	-1
ψ_2'		1	\overline{N}		-3	1	3	-1
ψ_3			N	4	0	-1	0	1
ψ_4	N			4	0	-1	0	-1

Two θ -angles of $SU(3)_W$ and $SU(4)_W \leftarrow$ "nullified" by $U(1)_{PQ}$ and $U(1)_1$.

19/10

Hidden instantons:

 $SU(3)_W$ and $SU(4)_W$ hidden small instantons:

$$\propto \Lambda^4 \exp \left(-\frac{8\pi^2}{g_{\mathrm{SU(3)_{W}}}^2(\Lambda)} \right) \quad \text{and} \quad \propto \Lambda^4 \exp \left(-\frac{8\pi^2}{g_{\mathrm{SU(4)_{W}}}^2(\Lambda)} \right).$$

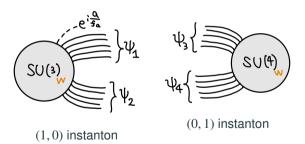
PQ symmetry: anomalous with respect to SU(3)_W

ightarrow Hidden (small) instantons: milder supperssion with coupling stronger than QCD. $\left(\frac{1}{g_{\mathrm{QCD}}^2(\Lambda)} = \frac{1}{g_{\mathrm{SU(3)_W}}^2(\Lambda)} + \frac{1}{g_{\mathrm{SU(4)_W}}^2(\Lambda)} \right)$ permits $g_{\mathrm{SU(3)_W}}(\Lambda) \gg g_{\mathrm{QCD}}(\Lambda)$

Question: Axion mass enhancement by SU(3)_w hidden instanton?

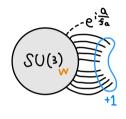
't Hooft Vertex: ['t Hooft (1976)]

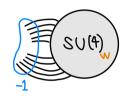
Effect of fermion zero modes around instantons are captured by "'t Hooft vertex"



	$SU(N)_{ST_2}$	SU(3) _W	$SU(N)_{ST_1}$	SU(4) _W
ψ_1	N	3		
ψ_1'	N	1		
ψ_2		3	N	
ψ_2 ψ_2'		1	\overline{N}	
ψ3			N	4
ψ_4	N			4

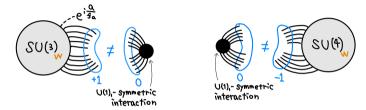
$U(1)_1$ charge of fermions around (1,0) or (0,1) Instantons:



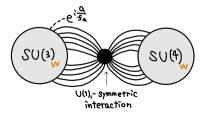


	$SU(N)_{ST_2}$	SU(3) _W	$SU(N)_{ST_1}$	SU(4) _W	$U(1)_{PQ}^{(SSB)}$	$U(1)_1$	U(1) ₂	$U(1)_3$
ψ_1	N	3			1	+1	1	1
ψ_1'	N	1			-3	+1	-3	1
ψ_2		3	N		1	+1	-1	-1
ψ_2'		1	\overline{N}		-3	+1	3	-1
ψ_3			N	4	0	-1	0	1
ψ_4	N			4	0	-1	0	-1

Fermion legs cannot be closed around a single (1,0) or (0,1) instanton,



while their pair with $U(1)_1$ -symmetric interactions generated by strong dynamics.



No Axion Mass Enhancement!

Small instanton effects are always from "pairs"

A pair of (1,0) and (0,1) instanton:

$$\exp\left(-\frac{8\pi^2}{g_{\mathrm{SU(3)_{\mathbf{W}}}^2(\Lambda)}^2}\right) \times \exp\left(-\frac{8\pi^2}{g_{\mathrm{SU(4)_{\mathbf{W}}}^2(\Lambda)}^2}\right) = \exp\left(-8\pi^2\left[\frac{1}{g_{\mathrm{SU(3)_{\mathbf{W}}}^2(\Lambda)}^2} + \frac{1}{g_{\mathrm{SU(4)_{\mathbf{W}}}^2(\Lambda)}^2}\right]\right)$$

$$= \exp\left(-\frac{8\pi^2}{g_{\mathrm{QCD}}^2(\Lambda)}\right)$$

- Matching of couplings: $\frac{1}{g_{\rm QCD}^2(\Lambda)} = \frac{1}{g_{\rm SU(3)_{
 m W}}^2(\Lambda)} + \frac{1}{g_{\rm SU(4)_{
 m W}}^2(\Lambda)}$
- \rightarrow No axion mass enhancement by large coupling of $SU(3)_{W}$.

(Even when $g_{SU(3)_W} \gg g_{QCD}$, effects are accompanied by $g_{SU(4)_W} \sim g_{QCD}$ suppression.)

No Axion Mass Enhancement!: Comment on Axion Quality

Lowest-Dimensional PQ-Breaking Operator

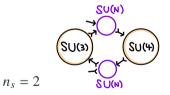
PQ-breaking, dimension-6 operator:

$$\psi_1\psi_2\psi_3\psi_4$$

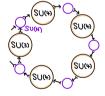
Not enough to avoid quality problem.

	$SU(N)_{ST2}$	SU(3)W	$SU(N)_{ST1}$	SU(4) _W
ψ_1	N	3		
ψ'_1	N	1		
ψ_2		3	N	
ψ_2'		1	N	
ψ3			N	4
ψ_4	N			4

→ In Redi and Sato model, **improvement of axion quality** is easily possible.



PQ breaking dimension: $4 + d \ge 6$



 $n_s = 5$

PQ breaking dimension: $4 + d \ge 15$

No axion mass enhancement also for $n_s \ge 3$.

Quality Problem and Larger Model

Lowest-Dimensional PQ-Breaking Operator PQ-breaking, dimension-6 operator:

$$\psi_1\psi_2\psi_3\psi_4$$

Not enough to avoid quality problem.

	$SU(N)_{ST2}$	SU(3) _W	$SU(N)_{ST1}$	SU(4) _W
ψ_1	N	3		
ψ_1'	N	1		
ψ_2		3	N	
ψ_2'		1	\overline{N}	
ψ_3			N	4
ψ_4	N			4

In larger model with $[SU(N)_{ST}]^{n_s} \times SU(3)_{\mathbf{W}} \times [SU(4)_{\mathbf{W}}]^{n_s-1}$ symmetry, dimension- $3n_s$ is the lowest-dimension PQ breaking.

$$(n_s = 3 \rightarrow)$$

	$SU(N)_{ST3}$	SU(3) _W	$SU(N)_{ST1}$	SU(4) _{W1}	$SU(N)_{ST2}$	SU(4) _{W2}
ψ_1	N	3				
ψ'_1	N	1				
ψ_2		3	N			
ψ_2'		1	N			
ψ_3			N	4		
ψ_4				4	N	
ψ_5					N	4
ψ_6	N					4

We find no enhancement similarly in larger models with $n_s \geq 3$

Larger Model ($n_s = 3$)

	$SU(N)_{ST3}$	SU(3) _W	$SU(N)_{ST1}$	SU(4) _{W1}	$SU(N)_{ST2}$	SU(4) _{W2}
ψ_1	N	3				
ψ_1'	N	1				
ψ_2		3	N			
ψ_2'		1	\overline{N}			
ψ_3			N	4		
ψ_4				4	N	
ψ_5					N	4
ψ_6	N					4

		$U(1)_{PQ}^{(SSB)}$	U(1) ₁	U(1) ₂	U(1) ₃	U(1) ₄
ψ_1	П	1	1	1	1	0
ψ_1'		-3	1	-3	1	0
	П	1	1	-1	-1	0
ψ_2 ψ_2'		-3	1	3	-1	0
ψ3		0	-1	0	1	0
ψ_4	П	0	0	0	-1	-1
ψ5		0	0	0	1	1
ψ_6		0	-1	0	-1	0

- Only U(1)_{PQ} is spontaneously broken, also for larger n.
- Additional n-2 anomalous (and unbroken) U(1)s, cancelling the additional θ angles.

Another Explanation: Directly from symmetry, without relying on 't Hooft vertex.

Vacuum amplitude with fixed axion field value a and background $SU(3)_W$ and $SU(4)_W$ gauge field:

$$W(a)|_{m,n} = \int \prod \mathcal{D}A_{\text{ST}} \mathcal{D}\psi^{\dagger} \mathcal{D}\psi \ e^{-S[\psi, A_{\text{ST}}, a]}$$

- m, n are winding number for each sectors.
- The amplitude = contribution to the axion potential.

We can redefine (rename) the fermions in path integral by $U(1)_1$ rotation $e^{i\alpha}$.

 $\to W(a)|_{m,n}$ changes its phase by anomaly, without shifting the axion a.

$$W(a)|_{\mathbf{m},\mathbf{n}} = \exp\left[2i\alpha(\mathbf{m} - \mathbf{n})\right] W(a)|_{\mathbf{m},\mathbf{n}}.$$

The amplitude (effects on the axion potential) vanishes, unless m = n