PICOLON暗黒物質探索実験の現状 2024

小寺 健太

Tokushima University 第1回 学術変革「地下稀事象」若手研究会@富山

宇宙暗黒物質

- 宇宙暗黒物質(Dark matter; DM)
 - ・光学的手法により検出できない未知の粒子.
 →直接探索が重要.
 - ・全エネルギー密度の26.4%を占める.
 - WIMPs(Weakly Interacting Massive Particles)は DMの重要な候補.
- WIMPs signal

•高感度な検出器が必須. •Low BG(10⁻¹ dru) •Low energy(100 keV_{nr})

Total energy density

From Plank collaboration result A&A 641, A1 (2020)

> https://doi.org/10.1051/0004-6361/201833880

WIMPsの検出

・年間における計数率変化(季節変動)を調べる

$$v_{\rm E} = v_{\rm sun} + v_{\rm reb}\cos 60^{\circ}\cos \left\{ \frac{2\pi}{365\,\rm d}(t-t_0) \right\}$$

= 244 + 15 cos $\left\{ \frac{2\pi}{365\,\rm d}(t-t_0) \right\}$
 $v_{\rm sun} = v_0 + (太陽の固有運動)$
= 230 km s⁻¹ + 12.2 km s⁻¹
 $v_{\rm reb} = 30$ km s⁻¹: 地球の公転速さ
 $t_0 = 165.5\,\rm d: (6月 上旬)$

NaI(TI)結晶によるDM探索

・ DAMA/LIBRA: annual modulationを12.9σの有意水準で報告.

- NaI(TI)検出器によるDAMAの検証(COSINE, ANAIS, SABRE, PICOLON)
 - COSINE, ANAIS: DM由来の可能性を排除
 - ・ DAMA: 検証グループの結晶BGが高い→完璧な検証ではない!!と主張
- ・検証にはDAMA/LIBRAと同等の結晶が必須.
- •Xe以外の異なるターゲット核によるDM探索は重要.

PICOLON Experiment @ 神岡(KamLAND site)

PICOLON: Pure Inorganic Crystal Observatory for LOw-energy Neutr(al)ino

OUR AIM

- 低BG NaI(TI)検出器によるDM探索.
- DAMA/LIBRAが主張する季節変動の検証.

PICOLON Experiment @ 神岡(KamLAND site)

CURRENT STATUS

- 参考(下図)

NaI(TI)結晶の高純度化.

- K.Fushimi et al. PTEP 2021 043F01 (#85)
 K. Kotera et. al. KEK-Proceedings2023 (#94)
- Ingot #85 and #94のBG→DAMA/LIBRAと同等.
- 純化手法の再現性を確認.

TODAY'S REPORT

半年のexposureに対するIngot#94のBG安定性&季節変動の検証について報告.

	DAMA	COSINE	ANAIS	SABRE	PICOLON		
Activity[µBq/kg]					#85	#94 (I st result)* ¹	Comp. Goal
^{nat} K	< 600	<1060	545-1200	120	≲600	$\lesssim 1000^{*1,2}$	~1000
²³² Th	2-3 I	2.5-35	<4	0.8	0.3±0.5	4.6±1.2*1	<10
²²⁶ Ra	8.7-124	-45	< 0	5	1.0±0.4	7.9±4.4*I	~10
²¹⁰ Pb	5-30	10-3000	740-3150	360	<5.7	19±6*1	<50
BG Rate	l dru	3 dru	3.6 dru	I.4 dru	-	~3 dru ^{*I}	>I dru

Experimental setup

• PICOLON NaI(TI)検出器(Ingot #85 & #94)

- 直径: 76.2 mm x 高さ: 76.2 mm 円柱
- 質量: 1.344 kg

Ingot#94 crystal

PSD method

• Pulse shape discrimination (PSD)

- •スペクトル解析とノイズ低減に使用。二つのパラメータを定義
- R_{PSD}:α解析

 $R_{\rm PSD} \equiv \frac{Q_{\rm Slow}}{Q_{\rm Total}} = \frac{\int_{0.2\,\mu s}^{1.2\,\mu s} I(t)\,dt}{\int_{0.0\,\mu s}^{1.2\,\mu s} I(t)dt}$

• R_{PSD(F)}:ノイズ低減

$$R_{\rm PSD(F)} \equiv \frac{Q_{\rm Fast}}{Q_{\rm Total}} = \frac{\int_{0.0 \ \mu s}^{0.2 \ \mu s} I(t) \ dt}{\int_{0.0 \ \mu s}^{1.2 \ \mu s} I(t) \ dt}$$

Typical scintillation sig.

PSDの結果

Ingot#94 exposure $= 156.12 d \times 1.344 kg$

2つのeventを明確に分離できるように PSD thresholdを設定 2025/1/27

(To be submitted)

9

α -ray spectrum解析

Ingot#94 exposure =156.12 d x1.344 kg

• X-axis: Energy calibrated value of alpha ray energies.

半年間でこの低イベント数!!

RIs	Energy range [keV] Events N
²³⁸ U, ²³² Th	
²³⁴ U, ²³⁰ Th, ²²⁶ Ra	
²²⁸ Th, ²²⁴ Ra, ²¹⁰ Po, ²²² Rn	論文執筆中より
²¹⁸ Po, ²¹² Bi, ²²⁰ Rn	非公開
²¹⁶ Po	
²¹⁴ Po	

各ピークの計数値

6つのピークのイベント数を数え、 放射平衡の関係から特定のRIのactivityを 計算.

α -ray spectrum解析

- ・6つのピークのイベント数を数え、放射平衡の関係から特定のRIのactivityを計算.
 - 放射平衡:
 - Th-Chain: All RI
 - U-Chain:
 - $U_1:^{238}U \rightarrow \cdots \rightarrow ^{234}U$
 - $U_2^{:226} \operatorname{Ra} \rightarrow {}^{222} \operatorname{Rn} \rightarrow {}^{218} \operatorname{Po} \rightarrow \cdots \rightarrow {}^{214} \operatorname{Po}$

得られたイベント数をExposureでわる

BG result (Preliminary)

Th-Chain (from ²³² Th) \sim 10: GOOD 4.6±1.2*1	
²³⁰ Th → + + / / -	
U ₁ (²³⁸ U, ²³⁴ U)	
U ₂ (²²⁶ Ra, ²²² Rn, ²¹⁸ Po, ²¹⁴ Po) 非公用 ~ 10: GOOD 7.9±4.4*1	
²¹⁰ Po(→ ²¹⁰ Pb) <50: GOOD 19±6*1	

Ingot#94 radioactivity is stable.

β / γ -ray spectrum解析

Ingot#94 exposure=156.12 d x1.344 kg

• Geant4シミュレーションで解析中

シミュレーションに適用したBG濃度(NaI)

RI	BG濃度			
²¹⁰ Pb, ²¹⁰ Bi	I5±2 μBq/kg			
²¹⁴ Pb, ²¹⁴ Bi	2.7±0.9 μBq/kg	α解析より		
²⁰⁸ TI	7.5±0.7 μBq/kg			
⁴⁰ K	20 ppb	過去解析から仮定		
25I, 29I	IO μBq/kg	過去解析から仮定		
126 <u>1</u>	l μBq/kg	超ム所加すり以及		

NaI(TI)結晶のみBG: ~10⁻¹ dru (先行研究と一致)

低エネルギー領域の解析

80 keV_{ee}以下の領域にはノイズ信号が混入

Signal vs SPN:

200 nsの間に複数のパルスを 伴うかで弁別可

 $\Delta t > 200$ ns: Signal.

Baseline noise: Δtが極端に大きくなる. NoiseによってBaselineが 浮くため.

低エネルギー領域の解析

低エネルギー領域の解析

- 3 dru程度のBG.
- 3 keV_{ee}周辺にノイズ信号残存.

- Cut: PSDだけではノイズ除去難しい
 - 機械学習による除去(天羽ポスター: P3)

季節変動の検証

• 4-6 keV領域における計数率から季節変動をテスト

↑ from 2021 Nov. 11

Limitの計算

J.D. Lewin et.al. Phys., 6(1), 87–112 (1996). *1: Y. Urano et.al., PoS, TAUP2023, 087 (2024). *2: Joo et.al. Astro. Phys, 108, 50–56, (2019).

スピン依存しない相互作用(SI)におけるLimit
Q.F.

$$\frac{dR}{dE}\Big|_{obs} = \frac{1}{f} \frac{dR}{dE_{NR}} \frac{F(q)}{F(q)}$$
Q.F.

- Na, I: エネルギー依存無を仮定
- $f_{\rm Na} = 0.173 \pm 0.001$ *1
- $f_{\rm I} = 0.051 \pm 0.002$ *2
- ・DAMA/LIBRAの探索域まで:2桁

→ノイズ除去が必要. I keVのEnergy thresholdを目指す.

Summary & Outlook

Ingot#94 NaI(TI) crystalのBG: 安定 & 季節変動のテストができた
 初期 | か月の測定データと比較。BGの精度が向上

Activity/aroup					PICOLON			
[µBq/kg]	DAMA	COSINE	ANAIS	SABRE	#85	#94 (1 st result)*1	#94 (This work)	Comp. Goal
^{nat} K	< 600	<1060	545-1200	120	≲600	$\lesssim 1000^{*1,2}$	$\lesssim 1000^{*2}$	~1000
²³² Th	2-31	2.5-35	<4	0.8	0.3±0.5	4.6±1.2*1	非公開	<10
²²⁶ Ra	8.7-124	-45	< 10	5	1.0±0.4	7.9±4.4*1	非公開	~10
²¹⁰ Pb	5-30	10-3000	740-3150	360	<5.7	۱ <i>9</i> ±6*۱	非公開	<50
BG Rate (dru)	I	3	3.6	1.4	-	~3*1	~3	>1

- 残るBG: PMT由来→低エネルギー領域のGeant4シミュレーションで明らかにする
- ・高感度NaI(TI)検出器によるDM実験が可能に!
 - 両読みの検出器を開発中
 - 10 keV以下のエネルギー域のノイズCut

非公開の内容については 近日中に論文として出版予定 しばしお待ち下さい!