

銀ゼオライトを用いた > 空気中ラドン除去性能の研究

第1回 学術変革「地下稀事象」若手研究会

神戸大学 理学研究科 曽根貴将,竹内康雄

文部科学省科学研究費助成事業 学術変革領域研究(A)

極稀事象で探る宇宙物質の起源と進化

新たな宇宙物質観創生のフロンティア

Supported by JSPS KAKENHI Grant Number 24H02243

第1回 学術変革 「地下稀事象」 若手研究会

2025/3/7

1

➢Introduction
➢循環試験
➢1-pass試験
➢まとめ(と今後について)

2

➤Introduction >活環試験 >1-pass試験

▶まとめ(と今後について)

2025/3/7

第1回 学術変革 「地下稀事象」 若手研究会

3

Introduction

Motivation

▶地下実験ではラドン-222(Rn)が主なバックグラウンドになる

>スーパー(ハイパー)カミオカンデ: <1mBq/m³のRn除去空気の供給が必要
>SK: 活性炭を用いたラドン除去システム[1]

▶HK: 実験装置の巨大化(有効体積約8倍)に伴いRn除去システムの増強が望ましい

第1回学術变革「地下稀事象」若手研究会

2025/3/7

Introduction			[2] <u>J. Phys. Chem. C 2</u> [3] <u>Sci Rep 13, 6811 (2</u> [4] <u>Kobe-u, Takagi Mt</u>	014, 118, 24811 – 25290. 2023). thesis (2024).	
<u>銀ゼオライト</u> ▶非常に高い空気中Xe, Rr	n吸着特性を示	す報告があ	[5] <u>Y.Takeuchi et al./</u> [6] <u>Nuclear Inst. and M</u> 3 [2,3]	<u>Physics Letter B 452 (1999) 418-424</u> Methods In Physics Research, A 867 (2017) 108-114 銀ゼオライトは常温で 粒状活性炭の約700倍以上	
▶吸着能力の評価: Rn吸着係 ▶ <i>K</i> = ^{<u>FR×RT</u>} [m³/kg](♪	系数(<i>K</i>)[3]を使う FR:空気流量, <i>RT</i>	保持時間, <i>n</i>	1:質量)	SKの冷却活性炭の約 <mark>9</mark> 倍	
試料	<i>m</i> [kg]	RT[day]	$K[m^3/kg]$		
Ag-ZSM-5 [3]	8.85×10^{-3}	10.69	3500	SKの粒状活性炭と	
Ag-ETS-10 [3]	16.3×10^{-3}	19.16	3400	近いものを使用した	
活性炭繊維[4]	4.65	1.9	6.47		
粒状活性炭 [4]	26.9	10.16	4.96		
冷却活性炭(SK) [5,6]	18.8	16.5	379		
> 生仁四のではりご要由が方いたい(しりょ/…3)できやし ていた					

▶先行研究ではRn濃度が高い状況(~kBq/m³)で試験していた。

▶<u>低放射能環境(~1mBq/m³)でも高いRn吸着能力が確認できればSK, HKで</u> <u>銀ゼオライトを使用できる</u> 本研究で確かめたい

2025/3/7

Introduction

2025/3/7

第1回 学術変革 「地下稀事象」 若手研究会

7

第1回 学術変革 「地下稀事象」 若手研究会

2025/3/7

循環試験

吸着試験の例

・ 銀ゼオライト接続後のカラム経由Rn濃度測定が可能になった。

- ・ Rn濃度比の測定値を Rn濃度比 = <u>カラム経由Rn濃度</u> で求める。
- 安定なところの平均(P0 fitting)をとって、Rn濃度比からRTとKを求める。

3AgFER, 20g, 3.0SLM, -90°C

DOI: 10.1093/ptep/ptae181

> Introduction > 循環試験 > 1-pass試験 > まとめ(と今後について)

12

2025/3/7

1-pass試験

> Introduction > 循環試験 > 1-pass試験 > まとめ(と今後について)

2025/3/7

まとめ

<u>循環試験</u>

試料	<i>RT</i> [day]	$K[m^3/kg]$
3AgFER(-70°C)	2.65 ± 0.02	573 ± 4
3AgFER(-90°C)	11.97 ± 0.06	2563 ± 14
8AgFER-B(-90°C)	30.12 ± 0.37	6506 ± 81
8AgFER-D(-90°C)	21.38 ± 0.16	4618 ± 35

>湿度に敏感→ 露点温度-90°C程度が必要
 >8AgFER-Bが最も良い結果を示した
 → 今後はこれを使用

▶SKの冷却活性炭(K=379)の12倍以上

<u>1-pass試験</u>

1-pass	Baking degrees[°C]	Baking time[h]	degree of vacuum[Pa]	Dew point[°C]	Rn removal rate(Max)
	200	21	$1.2 imes 10^{-4}$	-78	3.14×10^{-2}
2回目	200	25	1.4×10^{-4}	-90	1.30×10^{-1}
3回目	300	114	$4.3 imes 10^{-5}$	-92	9.52×10^{-5}
4回目	200	120	4.9×10^{-5}	-92	1.66×10^{-1}

▶十分なBaking温度(300°C)と時間が必要

▶3回目試験

▶目標達成期間は2日

→入力の露点温度を下げる(-90℃では不足)

- ・ 上流に除湿用のゼオライトを使用する(実験中)
- ・ HK実装に向けて4kgでの試験を予定

16

2025/3/7

Appendix

<u>現行のRn除去システム(2013upgrade後)</u>

- ・SKの水面とタンク上部の間へRn除去空気を供給
- ・内部へRn含有空気が流入しないように圧力が高い
- 常温活性炭(8m³) + 冷却活性炭(50L, -40°C)
- ・流量: 18m³/h
- ・露点温度:-65℃

<1mBq/m³のRn除去空気

place	Input air	Output air	Dome air	Mine tunnel Warm season	Mine tunnel Cold season
Rn濃度 [Bq/m ³]	0.08 ± 0.07	28.8 ± 0.07	30 - 50	2000 - 3000	100 - 300

2025/3/7

活性炭について

[8]Applied Radiation and Isotopes 125 (2017) 185-187

吸着能の温度依存性

- ≻活性炭における R n 吸着係数は温度に指数関数的に依存する ことが知られている
- $\succ K = K_0 \exp\left(\frac{Q}{R \cdot T}\right) \left[\frac{m^3}{kg}\right] \left(=\frac{FR \cdot RT}{m}\right)$
 - > K_0 : the nature of frequency factor [m³/kg],
 - > Q : the adsorption heat [J/mol]
 - > R : the molar gas constant 8.314 [J/mol/K]
 - > *T* : the temperature of activated charcoal [K]

				<u> </u>	
Temperature °C	Temperature K	Mass of charcoal g	Flow rate L/min	Breakthrou gh t ime min	Adsorption coefficient L/g
23 12	296.15 285.15	181.0	8.3	150	6.9 ± 1.7 10.4 ± 1.6°
-2	271.15	90.4	18.0	95	18.9 ± 3.4
-18 -33	255.15 240.15	14.6 15.0	28.0 32.5	27 47	51.8 ± 9.8 102 ± 12
-44	229.15	5.1	46.0	17	153 ± 25
- 48	225.15	4.2	45.0	16	$1/1 \pm 33$

Table 1 Experiment measurement of adsorption coefficient at different temperatures.

2025/3/7

第1回 学術変革 「地下稀事象」 若手研究会

-48°C is nearly 25 times higher than 23°C

>ゼオライト

▶ 結晶性の多孔質アルミノケイ酸塩の総称

▶ 人工的に多種多様なゼオライトが合成されており イオン交換体、排ガスの分解、吸着作用を利用し た土壌改良剤など様々な用途で使用されている。

▶ 最小単位は四面体構造の(SiO₄)⁴⁻および(AIO₄)⁵⁻

細孔径一覧図

>フェリエライト(FER)

- > 斜方晶系のゼオライトで単位胞の組成は Na₂Mg₂[Al₆Si₃₀O₇₂]・18H₂O
- ➤ Z方向に10員環(5.4×4.2Å)、Y軸方向に8員環 (4.8×3.5Å)の細孔を持ち、10員環と8員環の細孔 が直行することにより細孔を形成する。
- ▶ ベンゼン環の細孔内への侵入は、10員環の断面が楕円 形に歪んでいるため制限される。

2025/3/7

第1回学術变革「地下稀事象」若手研究会

2025/3/7

1-pass試験

<u>3回目の試験</u>

強力な断熱を巻いた

300°C baking

第1回 学術变革 「地下稀事象」 若手研究会

2025/3/7

1-pass

2025/3/7

第1回 学術変革 「地下稀事象」 若手研究会

神戸大-これまでの試験

神戸大-これまでの試験

Y. Kotsar修論


```
カラム保持時間:
3.5/3 day = 28 hour
流量 0.4 L/min
ラドン検出器通過時間:
80 [L] / 0.4 [L/min] = 200 min.
= 3.33 h
ラドン検出器にラドンが滞在する
割合:
3.33 / (28 + 3.33) --- 1
= 0.106 = 1/9.4
ラドン濃度がこの比になっていると
仮定すると、測定値は、
  157 / 916 = 0.171 = 1/5.8
\sim 157 / 1031 = 0.152 = 1/6.6
→ ほぼあっている
```

- 1. The Super Kamiokande detector
- 2. <u>Adsorption of radon on silver exchanged zeolites</u> <u>at ambient temperatures</u>
- 3. <u>Role of Silver Nanoparticles in Enhanced Xenon Adsorption</u> <u>Using Silver-Loaded Zeolites</u>
- 4. <u>高木修論</u>
- 5. <u>Y.Takeuchi et al./ Physics Letter B 452 (1999) 418-424</u>
- 6. Nuclear Inst. and Methods In Physics Research, A 867 (2017) 108-114
- 7. <u>フェリエライト</u>
- 8. Applied Radiation and Isotopes 125 (2017) 185-187
- 9. <u>Development of high sensitivity radon detector for purified gases</u>
- 10. <u>Y.Kotsar修論</u>
- 11. DOI: 10.1093/ptep/ptae181