Comprehensive Bayesian Exploration of Froggatt-Nielsen Mechanism

Keiichi Watanabe (ICRR, U. Tokyo)

Based on arXiv: 2412.19484 (accepted in JHEP) with M. Ibe (ICRR) and S. Shirai (IPMU)

Underground Rare Events Young Researchers' Workshop @ U. Toyama, 2025.3.6

1. Flavor structure in the SM

2. U(1) flavor symmetry

3. "Good" charge assignments

4. Summary

Standard Model (SM)

Very successful

 Repetitive structure of (quarks and leptons) × 3

Fermion mass structure

• There is a hierarchical mass structure

Structure of fermion mixings

• Mixing matrices have distinctive structures

Flavor puzzle

 Hierarchical masses and angles do not arise from O(1) fundamental Yukawa's,

$$\mathcal{L} = y_{ij} F_i F_j h, \qquad y = \begin{pmatrix} 0(1) & 0(1) & 0(1) \\ 0(1) & 0(1) & 0(1) \\ 0(1) & 0(1) & 0(1) \end{pmatrix}$$

• $y_f \ll 1$ (except for y_t) is a significant issue

1. Flavor structure in SM

2. U(1) flavor symmetry

3. "Good" charge assignments

4. Summary

Froggatt-Nielsen (FN) mechanism

C.D.Froggatt and H.B.Nielsen, Nucl,Phys.B 147 (1979)

• SM fermions with new U(1) charges.

For example,

Only limited Yukawa interactions are allowed

$$\mathcal{L} = \kappa_{ij} F_i F_j h, \qquad \kappa_{ij} = O(1), \qquad \text{for } f_{Fi} + f_{Fj} = 0$$

Froggatt-Nielsen (FN) mechanism

• With a new scalar Φ : -1, new operators can be written

Here, M_* is a very high scale.

FN mechanism

• If ϕ gets VEV and U(1) is broken, Yukawa interactions arise

$$\kappa_{ij} \left(\frac{\Phi}{M_*}\right)^{f_{Fi}+f_{Fj}} F_i F_j h \xrightarrow{\Phi \to \langle \Phi \rangle} \kappa_{ij} \left(\frac{\langle \Phi \rangle}{M_*}\right)^{f_{Fi}+f_{Fj}} F_i F_j h,$$

$$\frac{\gamma_{ij}}{=\kappa_{ij} \times \epsilon^{f_{Fi}+f_{Fj}}} \epsilon = \langle \Phi \rangle / M_* = O(0.1)$$

$$\kappa = \begin{pmatrix} 0(1) & 0(1) & 0(1) \\ 0(1) & 0(1) & 0(1) \\ 0(1) & 0(1) & 0(1) \end{pmatrix} \longrightarrow y = \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$$

•
$$\kappa$$
 distribution $\longrightarrow y_f$, s_θ prediction

L. Hall, H. Murayama and N. Weiner, PRL 84 (2000) 2572-2575

N. Haba and H. Murayama, PRD 63 (2001) 053010

Motivation

• What charges are good ?

Are there any charge assignments that are entirely unknown?

How can we distinguish many good FN charges ?
 We aim to get closer to understanding the origin of flavor structure.

1. Flavor structure in SM

2. U(1) flavor symmetry

3. "Good" charge assignments

4. Summary

How to find good charges

 Compare the plausibility of multiple different FN charge assignments

• We adopt **Bayesian inference**

(J. Bergstrom, D. Meloni and L. Merlo, PRD 89 (2014) 9, 093021)

$$P(M_i | Data) \\ \propto P(Data | M_i) \times P(M_i) \\ \swarrow_i$$

$P(M_i|Data)$: posterior probability of models

 $P(M_i)$: prior probability of models

 $P(Data|M_i)$: marginal likelihood

Bayes factor

$$\frac{P(M_i|Data)}{P(M_j|Data)} = \frac{Z_i}{Z_j} \times \frac{P(M_i)}{P(M_j)} B_{ij}$$

Bayes factor: Comparison of the plausibility of two models

Jeffreys scale

Z (picture)

$$Z = P(Data|\kappa, \epsilon, f_F) = \int d\mathcal{O} \, Obs(\mathcal{O}) \, \times \, Th(\mathcal{O})$$

Large overlap \longrightarrow Large Z

Small overlap \longrightarrow Small Z

Concrete function forms

Fermion Yukawa

 $\mathcal{Y}_{u,c,t}$, $\mathcal{Y}_{d,s,b}$, $\mathcal{Y}_{e,\mu,\tau}$

CKM and PMNS parameters

 s_{12}^{CKM} , s_{23}^{CKM} , s_{13}^{CKM} , δ^{CKM} , s_{12}^{PMNS} , s_{23}^{PMNS} , s_{13}^{PMNS} , δ^{PMNS}

Neutrino mass ratio (normal ordering, Majorana) $\Delta m_{12}^2/\Delta m_{13}^2 = (m_1^2 - m_2^2)/(m_1^2 - m_3^2)$

Results (quark + lepton)

 We found O(10²) charges which can explain the SM flavor structure

95% range

f_Q	$f_{\overline{u}}$	$f_{\overline{d}}$	f_L	$f_{\overline{e}}$	$\log_{10}(\mathcal{Z}_{\mathrm{C}}/\mathcal{Z}_{0,\mathrm{C}})$	ϵ
5, 3, 0	7, 3, 1	6, 5, 5	10, -9, -9	1,3,5	150.55 ± 0.03	$0.301 \rightarrow 0.322$
5, 3, 0	8, 4, 1	6, 6, 6	10, -9, -9	2, 2, 4	150.49 ± 0.02	$0.336 \rightarrow 0.349$
5, 3, 0	7, 3, 1	6, 5, 5	10, 9, -9	3, 1, -5	150.48 ± 0.02	$0.301 \rightarrow 0.321$
5, 3, 0	7, 3, 1	6, 5, 5	3, -2, -2	9,9,6	150.42 ± 0.05	0.307 ightarrow 0.328
5, 3, 0	8, 4, 1	6, 6, 6	3, -2, -2	9,9,7	150.41 ± 0.02	0.335 ightarrow 0.349

- Posterior ratio = $10^{150} \times Prior$ ratio
- This is a triumph of FN mechanism

1. Flavor structure in SM

2. U(1) flavor symmetry

3. "Good" charge assignments

4. Summary

 We first quantitatively discussed good FN charges explaining the flavor structure of the SM

• We found that there are $O(10^2)$ such charges

 Prediction of flavor changing processes can depend on the charge assignments (next Chitose-kun's talk)