Search for supernova relic neutrinos using machine learning techniques in KamLAND

Research Center for Neutrino Science, Tohoku University Minori Eizuka for KamLAND collaboration (e-mail: minori@awa.tohoku.ac.jp)

11th supernova neutrino workshop

Astrophysical neutrinos

Supernova relic neutrinos (supernova mechanism, cosmological inputs) Solar antineutrinos (beyond the standard physics)

 $\begin{array}{l} \nu_e \rightarrow \nu_\mu \rightarrow \bar{\nu_e} \\ \text{or} \; \nu_e \rightarrow \bar{\nu_\mu} \rightarrow \bar{\nu_e} \end{array}$

from NASA images

Light dark matter annihilation $\chi \chi \rightarrow \nu \bar{\nu}$

> Neutrinos from primordial black hole (dark matter candidate)

from NASA images

A Marine Ma Marine Mari

from NASA images

from NASA images

Kamioka Liquid-scintillator Anti-Neutrino Detector (KamLAND)

Detector period of KamLAND experiment

KamLAND finished data taking in August 2024. \rightarrow Full data analysis is in progress.

Event reconstruction in KamLAND

- When charged particles pass through a liquid scintillator, scintillation light is emitted isotopically.
- Scintillation light is detected by the ID 17-inch/20-inch PMTs.
 → Hit timings and charges are used for energy and vertex reconstruction.
- Astrophysical neutrino signal is detected via inverse beta decay (IBD).

▶ Prompt event and delayed event have spatial-temporal correlation.
 → event identification by delayed-coincidence method

Basic concept of event discrimination

KamNet: spatiotemporal deep neural network

Convolutional LSTM \rightarrow time correlation

Analysis overview

Hit timing difference

In simulation, > 20% difference is confirmed between signal and background.

Training data

Simulation events are used for KamNet training and test.

Hit timing distribution of training events [ns] signal 0.08 Normalized events / 1.5 background 0.06 0.04 Tof-subtracted time [ns] Nhit distribution before matching 0.0016 signal background 0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

0

500

1000

Nhit

1500

2000

2025/3/4

2500

KamNet training results

- Rejection efficiency is stabilized toward the end of training.
 - \rightarrow Training is succeeded (converged).
- The score distributions of training and test data are similar, and the rejection efficiencies of them are close.

15

10

5

Rejection efficiency with 90% signal

70

60

50

40

30

20

0

KamNet score threshold from FoM

FoM is calculated based on the test data at the end of training.

 $(E_{\rm vis} = 8.5 - 30 \text{ MeV}, r \le 600 \text{ cm})$

- signal: SRN model (Horiuchi2009)
- ► background: Expected atm. ν NC in the previous result <u>S. Abe et al 2022 ApJ 925 14</u> \rightarrow scaled by energy range, fiducial volume, livetime

ex) before purification

Summary of threshold and efficiency

Trained model shows \sim 75% *background rejection with* \sim 80% *signal acceptance.*

	before purification	after purification	Zen400	after OD
KamNet score threshold @ max FoM	0.78	0.59	0.31	0.25
signal acceptance	67.1%	79.0%	77.9%	79.2%
background rejection efficiency	86.6%	74.0%	74.4%	77.2%

Systematic uncertainty (difference in simulation and real)

	before purification	after purification	Zen400	after OD
difference of signal acceptance	7.3%	1.2%	6.3%	2.0%
difference of BG rejection efficiency	2.8%	7.5%	16.3%	2.9%

- Event arising from atmospheric neutrinos is one of the dominant background in KamLAND's SRN search.
- ► Deep neural network "KamNet" can discriminate events using the spatiotemporal difference in hit map.
- Trained KamNet model showed good performance:
 - ~75% BG rejection efficiency with ~80% signal acceptance

Systematic uncertainties related to the application of KamNet were estimated (\sim 10%).

- Fast neutron full simulation to estimate systematic uncertainty accurately Muon simulation → record kinematics when neutron enter the BO or LS
- KamNet model construction for during/after Zen800 period
- (KamNet model improvement to achieve better performance)
- ▶ KamNet cut for $\bar{\nu}_e$ candidate → astrophysical $\bar{\nu}_e$ search

~1.5 times larger exposure, ~3 times better S/N from previous KamLAND result

backup

M. Eizuka, SRN search in KamLAND, 11th supernova neutrino workshop

KamNet performance for different particles

- $e^+ + \gamma$ and e^- are looked slightly different by KamNet. Difference of their acceptance is < 10%.
- Statistics of neutron simulation is very low. It is difficult to state that atmospheric neutrinos and neutrons are similar.

Systematic uncertainty (performance fluctuation)

The fluctuation of KamNet performance in each training is considered as a systematic uncertainty.

This uncertainty is estimated from the results of 100 times trainings.

Ex) before purification

