Search for supernova relic neutrino search in SK-Gd experiment

Masayuki Harada (The Unversity of Tokyo)

11th Supernova neutrino workshop @Komaba campus, The University of Tokyo(Mar. 2 - Mar. 3)

Content

- Supernova relic neutrino (SRN)
- SK-Gd experiment
- SRN search in SK-Gd
 - Analysis
 - Search result in SK-Gd with 0.01w%
 - Current study for SRN search in SK-Gd
 - Prospects for upgraged SK-Gd
- Summary

Supernova relic neutrinos

- Supernova relic neutrinos (SRN) An integrated flux of the neutrinos from all past CCSNe
- SRN flux: $\Phi_{\text{SRN}} \propto \left[\begin{array}{c} \text{SN rate} \end{array} \right] \otimes \left[\begin{array}{c} \text{v emission from SN} \end{array} \right] \otimes \left[\begin{array}{c} \text{Redshift} \end{array} \right]$
 - → Information for star formation history
 - Evolution of star formation rate 0
 - SN neutrino flux 0
 - Black hole formation rate
 - Neutrino physics... 0

Flux search from Ø(1-10) MeV SK-

Supernova relic neutrinos

- Supernova relic neutrinos (SRN) An integrated flux of the neutrinos from all past CCSNe
- SRN flux: $\Phi_{\text{SRN}} \propto \left[\begin{array}{c} \text{SN rate} \end{array} \right] \otimes \left[\begin{array}{c} \text{v emission from SN} \end{array} \right] \otimes \left[\begin{array}{c} \text{Redshift} \end{array} \right]$
 - → Information for star formation history
 - **Evolution of star formation rate** 0
 - SN neutrino flux 0
 - Black hole formation rate
 - Neutrino physics... 0

Flux search from *O*(1-10) MeV SK-Gd experiment

SK-Gd experiment

SK-Gd experiment

Analysis and results

SRN signal in SK-Gd

 Search for inverse-beta decay (IBD) of electron anti neutrinos

$$\bar{\nu}_e + p \longrightarrow e^+ + n$$

- Largest cross-section @ SRN signal range
- Simple event topology: 1 positron and 1 neutron → Require only one delayed neutrons signal

Background events in SK-Gd

Neutron inducing background events remain after tagging neutrons

Analysis implovement

- NCQE reduction
- Neutron detection using ML
- Spectrum fitting with various DSNB models

Similar, but different event topology from DSNB signal

NCQE multiple gamma CANNOT distinguish by SK (= detected as same event) → Hit pattern is crucial to reduce NCQE

• NCQE events

Cherenkov angle cut is powerful variable to reduce obvious multi-ring NCQE

Single/hard to classify multi-γ event

Difficult to see the clear difference from reconstructed θ_{C}

New variable: Multiple scattering goodness

Multiple scattering goodness

Multiple scattering goodness (MSG)

lacksquare→ Found to be employed to remove gamma-ray events

Looks to be more multiple scattering than single electron with similar energy

Originally prepared for solar neutrino analysis to identify low-energy background event

Multiple scattering goodness

Reduce background by 20% while keeping IBD efficiency!!!

Improvement of neutron tagging

Neutron tagging using Neural Network Well understanding for Gd-capture gamma-rays 0

12 Feature variables

Improvement of neutron tagging

Neutron tagging using Neural Network Well understanding for Gd-capture gamma-rays 0

Achieve 10% (SK6) / 30% (SK7) higher efficiency than previous result

Results

SRN search result 956.2 days SK-Gd

Update the world stringent sensitivity for some bins

Spectral fitting

Make PDFs for

- ο ν_{ρ} CC, Decay-e, NCQE, μ/π , spallation
- E > 16 MeV to avoid uncertainty

To constraint background, 6 panels for

- Number of neutrons $(n=1, n\neq 1)$
- Cherenkov angle 0
 - small(20-38°): μ/π
 - mid(38-53°): signal, spallation, decay-e —
 - Large(70-90°): NCQE, μ/π

Spectral fitting

Calculate combined likelihood

$$\mathscr{L}\left(\text{Data} \mid N_{s}, \vec{N}_{b}, \vec{\varepsilon}\right) = e^{-\sum_{j \in s+b} N_{j}} \prod_{i=1}^{N_{\text{data}}} \sum_{j \in s+b} N_{j} \text{PDF}_{j}(E^{i}, \theta_{C}^{i}, N_{\text{tagged }n}^{i} \mid \vec{\varepsilon})$$
$$\mathscr{L}_{combined} \left(N_{DSNB}\right) = \prod_{SK-phase=1}^{7} \mathscr{L}_{SK-phase} \left(N_{DSNB}, \hat{\vec{N}}_{b}\right)$$

Best fit DSNB flux:

- 1.9 [(>16 MeV) /s/cm²]
 Within the range of flux predictions
- Reject zero hypothesis of DSNB with ~2.3σ level
- Reported at NEUTRINO 2024

Zero-DSNB assumption

Current status and prospects

Analysis update

- **Developing multiple scattering reduction variable**
- Neutron tagging using neutral network
- **Better understanding of the NCQE interaction (→later talks)**
- Investigation for new neutrino interaction model

Backups

Background: Atmospheric neutrinos

Hadronic interaction with oxygen nucleus leads to neutron emission

non-NCQE (CCQE)

Remove using PMT hit pattern, charge, existence of other hit cluster

Background: NCQE event reduction

Reduce by Cherenkov angle

NCQE events tend to have larger angle

single-y

multi-γ w/ close angle

16**()**

Remaining NCQE events: Cherenkov angle is reconstructed to ~42 deg

CANNOT distinguish from SRN

Remaining NCQE events: Cherenkov angle is reconstructed to ~42 deg

Looks like an event with more multiple scattering than electrons

Remaining NCQE events: Cherenkov angle is reconstructed to ~42 deg

Remaining NCQE events: Cherenkov angle is reconstructed to ~42 deg

MSG cut significantly reduces NCQE events at low-energy region

In future: **Develop ML-based NCQE reduction** including MSG cut

Result of improvement

Neutron tagging in 0.03% Gd conc.

Neutron tagging in 0.03% Gd conc.

Apply same NN method to SK-VII data

√ 63.1±1.1% with 0.02% mis-ID \rightarrow 1.4 times improvement

Summary

- First result of SRN search in SK-Gd was published
- In 2022, the Gd concentration was increased to 0.03% \rightarrow neutron tagging efficiency x1.4!
- Multitude of efforts towards understanding and reducing NCQE events
 - Multiple scattering reduction
 - Neutron tagging using neutral network
 - Better understanding of the NCQE interaction (later talk) 0
- Analysis of data up to 2023 is also on-going.