Investigation of the formation mechanism of central compact objects with GR-MHD simulations

CCOにおける磁場の起源の解明:超新星フォールバック降着流の 一般相対論的磁気流体力学シミュレーション

Akihiro Inoue (Osaka Univ.)

Shinsuke Takasao (Osaka Univ.), Kazumi Kashiyama (Tohoku Univ.), Yici Zhong (CIT, US), Hiroyuki R. Takahashi (Komazawa Univ.)

11th Supernova Neutrino Workshop (@ Univ. of Tokyo)

Diversity of young isolated neutron star

Magnetar $B_{\rm NS} \gtrsim 10^{14} {
m G}$

(C)RIKEN

the nature of their progenitors.

e.g.) Enoto+2019

Diversity of the neutron star-

Rotation-powered $B_{\rm NS} \sim 10^{11-13} {\rm G}$

CNASA

Central Compact Object (CCO) $B_{\rm NS} \lesssim 10^{11} {\rm G}$

Supernova mechanism or star's feature origin

This study will help us understand the supernova mechanism and

Supernova fallback

The fallback accr. rate (Metzger+2018, Zhong+2021)

 $M_{\rm fb}$ is sensitive to the progenitor structure and the supernova explosion mechanism, typically ~ $10^{-(4-1)}$ M_{\odot}

M_{fb}: fallback mass *t*_{fb}: fallback time

$\dot{M}_{\rm fb} = \frac{2}{5} \frac{M_{\rm fb}}{t_{\rm fb}} \times \begin{cases} 1 & (t \le t_{\rm fb}) \\ (t/t_{\rm fb})^{-5/3} & (t > t_{\rm fb}) \end{cases}$ Michel 1988, Chevalier 1989 s2014 20 25 ZAMS mass $[M_{\odot}]$ e.g.) Ugliano+2012, Ertl+2016

Neutrino cooling in fallback accretion

Strong $B_{\rm NS}$ or low $\dot{M}_{\rm fb}$

Weak $B_{\rm NS}$ or high $\dot{M}_{\rm fb}$ $(\dot{M}_{\rm fb}$: fallback accr. rate)

Fallback accr. flow

Chevalier+1989, Torres-Forné+2016, Shigeyama+2017

Strong $B_{\rm NS}$ (Magnetar or rotation powers)

Neutrino cooling in fallback accretion

Strong $B_{\rm NS}$ or low $\dot{M}_{\rm fb}$

Neutrino cooling

Fallback accr. flow

Chevalier+1989, Torres-Forné+2016, Shigeyama+2017

Strong $B_{\rm NS}$ (Magnetar or rotation powers)

Weak $B_{\rm NS}$

Outer crust formation

 $\stackrel{M^*_{\rm s}}{\overbrace{\delta M}} \stackrel{M_{\rm s}}{\longrightarrow}$

 $M [M_{\odot}]$

Purpose of this study

Question

- a magnetized NS?
- Condition of the CCO formation?

Purpose of this study

• How does the neutrino cooling affect the accr. dynamics around

Investigate the fallback accr. through GR-MHD w/ neutrino cooling • From the simulations, the criterion for CCO formation is derived

Neutrino cooling

Neutrino cooling (Itoh et al. 1989; Qian & Woosley 1996) Pair neutrino process $(e^+ + e^- \rightarrow \nu_{\rho} + \bar{\nu}_{\rho})$ $\dot{q}_{\text{pair}} = 5 \times 10^{42} \text{ [erg cm}^{-3} \text{ s}^{-1} \text{]} \left(\frac{T}{10^{12} \text{ K}} \right)^9$ URCA process $(p + e^- \rightarrow n + \nu_e, n + e^+ \rightarrow p + \bar{\nu}_e)$ $\dot{q}_{\text{URCA}} = 9 \times 10^{29} \text{ [erg cm}^{-3} \text{ s}^{-1} \text{]} \left(\frac{\rho}{10^6 \text{ g cm}^{-3}}\right) \left(\frac{T}{10^{12} \text{ K}}\right)^6$

At high ρ , \dot{q}_{URCA} dominates \dot{q}_{pair}

Steady solutions w/o magnetic field

Analytical solution (Chevalier 1989) $\frac{GM\dot{M}_{\rm in}}{M} = 4\pi r_{\rm NS}^2 H\dot{q} \quad \left(H = r_{\rm NS}^2 p_{\rm r}/GM\rho \sim r_{\rm NS}/4\right)$ r_{NS}

 $r_{\rm sh,pair} = 3.4 \times 10^2 \, [\rm km]$

$$\times \left(\frac{r_{\rm NS}}{10^6 \text{ cm}}\right)^{40/27} \left(\frac{M_{\rm NS}}{1.4 \text{ M}_{\odot}}\right)^{-1/27} \left(\frac{\dot{M}_{\rm fb}}{10^{-5} \text{ M}_{\odot} \text{ s}^{-1}}\right)^{-10}$$

 $r_{\rm sh, URCA} = 5.0 \times 10^2 \, [\rm km]$

$$\times \left(\frac{r_{\rm NS}}{10^6 \text{ cm}}\right)^{4/3} \left(\frac{M_{\rm NS}}{1.4 \text{ M}_{\odot}}\right)^{1/5} \left(\frac{\dot{M}_{\rm fb}}{10^{-5} \text{ M}_{\odot} \text{ s}^{-1}}\right)^{-2/5}$$

As $\dot{M}_{\rm fb}$ increases, shock radius decreases

<u>GR-MHD simulations w/ neutrino cooling</u>

- Accr. rate $\dot{M}_{in} \sim 10^{-(5-2)} [M_{\odot} \text{ s}^{-1}]$ (Ugliano+2012)
- NS mag. : $0 \text{ G}, 10^{13-15} \text{ G}$ (dipole)
- Adiabatic index : 4/3 (rad. press. » gas press.)

Resolution & Domain

 $10 \text{ km} \le r \le 1000 \text{ km}, \quad N_r = 16384 \ (= 2^{14})$

Initial condition

- magnetic pressure supported hydrostatic atmosphere
- NS surface : reflective boundary

Numerical sheme

HLL, 2nd-order in space (van Leer 1977) and time

Magnetospheric and shock radii when shock stalls

 $4\pi r_{\rm M}^2 H_{\rm M} \dot{q}$

analytical solutions.

- $r_{\rm M}$ and $r_{\rm sh}$ decrease w/ $\dot{M}_{\rm fb}$ while increase w/ $B_{\rm PNS}$.
- Semi-analytic solutions (updated version of Chevalier 1989) (1) : Pressure balance $p_{rad} = p_{mag}$
- 2: Energy equation

$$\dot{q}(\mathbf{r}_{\rm M}, r_{\rm sh}) = \frac{GM\dot{M}}{r_{\rm M}} \left(H_{\rm M} = \frac{r_{\rm M}^2 p_{\rm r}(r_{\rm M}, r_{\rm sh})}{GM\rho(r_{\rm M}, r_{\rm sh})} = \frac{12}{49}r_{\rm M}^2 \right)$$

Simulation results can be reproduced by the semi-

Time-sequenced images

We define the shock stalling timescale as $t'_{\text{stall}} = t_{\text{stall}} - t_{\text{shock}}$

The dependence of t'_{stall} on \dot{M}_{fb} and B_{PNS}

 t'_{stall} decreases w/ \dot{M}_{fb} and increases w/ B_{PNS} . Fitting result

$$\begin{aligned} \dot{S}_{\text{stall}} &= 2.0 \times 10^{-1} \text{ [s]} \left(\frac{\dot{M}_{\text{fb}}}{10^{-5} \text{ M}_{\odot} \text{ s}^{-1}} \right)^{-1.2} \left(\frac{B_{\text{PNS}}}{10^{14} \text{ G}} \right) \\ &+ 9.8 \times 10^{-2} \text{ [s]} \left(\frac{\dot{M}_{\text{fb}}}{10^{-5} \text{ M}_{\odot} \text{ s}^{-1}} \right)^{-0.69} \end{aligned}$$

If $t'_{stall} < t_{fb}$, a outer crust formation sets in.

NS• 1.3

Phase diagram: the diversity of the NS's B-field

By assuming $\dot{M}_{\rm fb} = (2/5)(M_{\rm fb}/t_{\rm fb})$, we derive the phase diagram of the NS's B-field

 $\begin{array}{ll} \mathsf{CCO} & \vdots \ t_{\mathrm{stall}}' < t_{\mathrm{fb}}, \ L_{\mathrm{spin}} < \dot{M}_{\mathrm{fb}} v_{\mathrm{ff}}^2 \\ \\ \mathsf{Magnetar} & \vdots \ t_{\mathrm{stall}}' > t_{\mathrm{fb}}, \ L_{\mathrm{spin}} < \dot{M}_{\mathrm{fb}} v_{\mathrm{ff}}^2 \end{array}$ Radio pulsar : $L_{spin} > \dot{M}_{fb} v_{ff}^2$

In the case of $B_{\rm PNS} = 10^{15}$ G, $M_{\rm fb} > 10^{-4}$ M_{\odot} is required for the CCO formation.

Phase diagram: the diversity of the NS's B-field

The region of radio pulsars seems to be rare … (Crust formation time, Multi-dimensional effect, Pulsar wind amplified by the accr.?)

Conclusion

- causes it to stall and contract.

· In the early phase, the shock expands, but later, neutrino cooling

 $M_{\rm fb} > 10^{-4} {\rm M}_{\odot}$ is required for the CCO formation for $B_{\rm PNS} = 10^{15} {\rm G}$.