高解像度ボルツマン 輻射輸送計算に向けて

伊藤 侃(早稲田大学), 赤穗 龍一郎 (早稲田大学),

長倉洋樹 (国立天文台),山田 章一 (早稲田大学)

2025/03/03 第11回超新星ニュートリノ研究会@東大駒場

Supernovae Mechanism

Supernovae Mechanism

Neutrino \ Heating

Neutrino Heating Mechanism

Revival the shockwave And achieve the explosion

Supernovae Mechanism

Neutrino Heating

Collision dominant

Advection dominant

Neutrino Transfer

Advection

Collision (ex, scattering, emission, absorption, etc...)

Boltzmann Equation

 $\frac{1}{c} \frac{\partial f(r, \Omega, \epsilon_{v}, \Omega_{v})}{\partial t} + \frac{\partial f(r, \Omega, \epsilon_{v}, \Omega_{v})}{\partial s} \\ = \frac{1}{c} \left[\frac{\partial f(r, \Omega, \epsilon_{v}, \Omega_{v})}{\partial t} \right]_{coll}$

Boltzmann Equation :

6D(space + momentum space) time evolution equation

It costs many computational resources to solve Boltzmann equation

Boltzmann Equation

Advection termCollision termBoltzmann Eq.
$$\frac{1}{c} \frac{\partial f(r, \Omega, \epsilon_v, \Omega_v)}{\partial t} + \frac{\partial f(r, \Omega, \epsilon_v, \Omega_v)}{\partial s} = \frac{1}{c} \left[\frac{\partial f(r, \Omega, \epsilon_v, \Omega_v)}{\partial t} \right]_{collision}$$

Advection term Neutrino propagation

Collision term Neutrino-matter interactions

Resolution Dependence

If the θ_{ν} resolution is 4 times higher than current, Eddington tensor P^{rr} differs by 10%.

As the radius is bigger, the error due to resolution is bigger

The resolution of the advection is not sufficient

Solving the Boltzmann Equation

Problem

Advection term should be solved

with high angle resolutionIf Collision term is solved with high resolution,

a significant increase in costs is necessary.

<u>Idea</u>

Only the Advection term is solved with high angular resolution The resolution of the collision term is kept.

Advection : $f^*(\epsilon_v, \Omega_v) = f^n(\epsilon_v, \Omega_v) - c\Delta t \ S(\epsilon_v, \Omega_v, t(r, \Omega))$

High Resolution

$$\begin{array}{l} \textbf{Collision:} \ f^{n+1}(\epsilon_{v},\Omega_{v}) = f^{*}(\epsilon_{v},\Omega_{v}) - \Delta t \left[\frac{\partial f^{n+1}(\epsilon_{v},\Omega_{v})}{\partial t} \right]_{coll} \end{array}$$

Low Resolution

Advection :
$$f^*(\epsilon_v, \Omega_v) = f^n(\epsilon_v, \Omega_v) - c\Delta t \ S(\epsilon_v, \Omega_v, t(r, \Omega))$$

High Resolution

Resolution Conversion : $f_{N_{fine}} \mapsto f_{N_{rough}}$

$$\begin{array}{l} \textbf{Collision:} f^{n+1}(\epsilon_{v},\Omega_{v}) = f^{*}(\epsilon_{v},\Omega_{v}) - \Delta t \left[\frac{\partial f^{n+1}(\epsilon_{v},\Omega_{v})}{\partial t} \right]_{coll} \end{array}$$

Low Resolution

Resolution Conversion :
$$f_{N_{rough}} \mapsto f_{N_{fine}}$$

Resolution Conversion : $f_{N_{fine}} \mapsto f_{N_{rough}}$

Resolution Conversion :
$$f_{N_{rough}} \mapsto f_{N_{fine}}$$

Resolution Conversion : $f_{N_{fine}} \mapsto f_{N_{rough}}$

High Resolution

Low Resolution

Low Resolution Nontrivial High Resolution

Resolution Conversion : $f_{N_{rough}} \mapsto f_{N_{fine}}$

Resolution Conversion : $f_{N_{rough}} \mapsto f_{N_{fine}}$

Non-trivial

The distribution function is assumed to be expressed by the polynomial

Resolution Conversion : $f_{N_{rough}} \mapsto f_{N_{fine}}$

The distribution function is assumed to be expressed by the polynomial

$$f_{\text{appr}}(\mu = \cos \theta_{\nu}) = \sum_{i=0}^{N_{\theta_{\nu}}^{\text{poly}}} a_{n} \mu^{n}$$
 $N_{\theta_{\nu}}^{\text{poly}}$: The order of polynomial

The distribution function in low mesh is

$$f_{\text{high}}(\mu_{i} = \cos \theta_{\nu,i})(\mu_{I} - \mu_{I-1}) = \int_{\mu_{I-1}}^{\mu_{I}} d\mu f_{\text{appr}}(\mu)$$
$$= \sum_{n=0}^{N_{\theta_{\nu}}^{\text{poly}}} \frac{a_{n}}{n+1} (\mu_{I}^{n+1} - \mu_{I-1}^{n+1})$$

Resolution Conversion : $f_{N_{rough}} \mapsto f_{N_{fine}}$

The distribution function is assumed to be expressed by the polynomial

How accurate is this conversion?

Methods

In the study, we perform the pilot study in order to test the effectiveness of this dual resolution prescription

In dual resolution prescription

the advection term **()** rigorous expression in the equations

we should study the resolution dependence of the collision term!

Method : Advection term

Boltzmann Eq. Advection term $\frac{1}{c}\frac{\partial f(r,\Omega,\epsilon_{v},\Omega_{v})}{\partial t} + \frac{\partial f(r,\Omega,\epsilon_{v},\Omega_{v})}{\partial s} = \frac{1}{c}\left[\frac{\partial f(r,\Omega,\epsilon_{v},\Omega_{v})}{\partial t}\right]_{c}$ the spatial dependence is eliminated $\frac{1}{c}\frac{\partial f(\epsilon_{\nu},\Omega_{\nu})}{\partial t} = \frac{1}{c}\left[\frac{\partial f(\epsilon_{\nu},\Omega_{\nu})}{\partial t}\right]_{\text{coll}} + S(\epsilon_{\nu},\Omega_{\nu},t(r,\Omega))$ Source term

Methods

we should study the resolution dependence of the collision term!

Advection term is replaced by the artificial source term

Only 3D(momentum) remains

As the artificial source term,

2 types of the source terms were carried out: Steady state Test & Time evolution Test

Method : Advection term

Steady state Test : resolution dependence

$$\begin{split} S_{\text{steady}} &= -\frac{1}{c} \left[\frac{\partial f_{\text{ref}}(\epsilon_{\nu}, \Omega_{\nu})}{\partial t} \right]_{coll} \\ &\frac{1}{c} \frac{\partial f(\epsilon_{\nu}, \Omega_{\nu})}{\partial t} = \frac{1}{c} \left[\frac{\partial f(\epsilon_{\nu}, \Omega_{\nu})}{\partial t} \right]_{coll} + S_{\text{steady}}(\epsilon_{\nu}, \Omega_{\nu}, t(r, \Omega)) \end{split}$$

In this case, the source term and collision term are canceled

The source term reproduce the reference distribution function if the resolutions are reference ones

Method : Advection term

Time evolution Test : resolution and interpolation dependence

$$S_{\text{time}}^{n} = \frac{f_{\text{ref}}^{n+1} - f_{\text{ref}}^{n}}{\delta t} - \frac{1}{c} \left[\frac{\partial f_{\text{ref}}^{n+1}(\epsilon_{\nu}, \Omega_{\nu})}{\partial t} \right]_{col}$$

The source term reproduce the reference distribution function if the resolutions are reference ones

Result : Steady state Test in θ_{ν}

Reference Resolution :

$$N_{\epsilon} = 20$$
$$N_{\theta_{\nu}} = 100$$
$$N_{\phi_{\nu}} = 6$$

Result : Steady state Test in θ_{ν}

Reference Resolution : $N_{\theta_{\mu}} = 100$

Error: $\left| \frac{f_{N_{\theta_{\nu}}}}{f_l} \right|$

$$\frac{f_{N_{\theta_{\nu}}} - f_{N_{\theta_{\nu}}=100}}{f_{N_{\theta_{\nu}}=100}}$$

If the resolution is current, $(N_{\theta_{\nu}}=10)$, the accuracy (RMS ~ 10^{-4}) is acceptable

Result : Time Evolution in θ_{ν}

Reference distribution

Reference Resolution : $N_{\epsilon} = 20$ $N_{\theta_{\nu}} = 40$ $N_{\phi_{\nu}} = 6$

Result : Time Evolution in θ_{ν}

The interpolation dependence

Reference Resolution : $N_{\theta_{\nu}} = 40$

Interpolation : Polynomial

Error:
$$\frac{f_{N_{\theta_{\nu}}} - f_{N_{\theta_{\nu}} = 40}}{f_{N_{\theta_{\nu}} = 40}}$$

Higher order of polynomial

Smaller relative error

Result : Time Evolution in θ_{ν}

The resolution dependence

RMS

Reference Resolution : $N_{\theta_{\nu}} = 40$

Interpolation : 4th-order Polynomial

Error

$$: \frac{f_{N_{\theta_{\nu}}} - f_{N_{\theta_{\nu}} = 40}}{f_{N_{\theta_{\nu}}} = 40}$$

Result : Steady state Test in ϕ_{μ}

Reference Resolution :

$$N_{\epsilon} = 20$$
$$N_{\theta_{\nu}} = 10$$
$$N_{\phi_{\nu}} = 24$$

Result : Steady state Test in ϕ_{μ}

Reference Resolution :

If the resolution is current, $(N_{\phi_{\nu}}=6)$, the accuracy (RMS $\leq 10^{-4}$) is acceptable

Result : Time Evolution in ϕ_{μ}

Reference Distribution

Reference Resolution :

$$N_{\epsilon} = 20$$
$$N_{\theta_{\nu}} = 10$$
$$N_{\phi_{\nu}} = 24$$

Result : Time Evolution in ϕ_{μ}

The resolution dependence

Reference Resolution :

 $N_{e} = 20$ $N_{\theta_{\nu}} = 10$ $N_{\phi_{\nu}} = 24$

Interpolation : 4th-order Polynomial

Err

or:
$$\frac{f_{N_{\phi_{\nu}}} - f_{N_{\phi_{\nu}}=24}}{f_{N_{\phi_{\nu}}=24}}$$

Higher resolution

Smaller relative error

Summary

- We perform the pilot study with dual resolution prescription and study the momentum angle resolution dependence.
- The When $N_{\theta_{\nu}} = 10$ ($N_{\phi_{\nu}} = 6$) with 9th (4th) order polynomial, the error ($\leq 10^{-2}$) is acceptable and the dual resolution prescription is valid. Future Work
- We will implement the Dual Resolution Prescription into the Boltzmann code and reveal the neutrino behavior with the high resolution calculation.