恒星進化から超新星爆発にわたる 連続的なニュートリノ光度の計算と 内部物理量との関係性 Continuous v emission from massive star and supernova & relationship between v's and stellar interior

Chinami Kato (TUS) collaborators: Akira Ito (Waseda), Ryuichiro Akaho (Waseda), Hiroki Nagakura (NAOJ)

2025/3/3-3/4 第11回超新星ニュートリノ研究会 @東京大学

Development of v observation

Iow background at low-energy neutrino (~MeV)
 various neutrino detection channel

e.g. inverse-β decay nuclear coherent scattering nuclear charged current ✓ all flavor neutrino observation

Continuous v emission & detection

✓ efficient neutrino emission from deep interior
 → key physics on massive star evolution and SN dynamics
 ✓ observational development
 → long-time v observation

(a few days before and a few minutes after SN) consistent theoretical treatment of v's throughout evolution

Combination of preSN & SN neutrinos

Feel free to add more!!

PreSN neutrino obs.
 progenitor type (e.g., ECSNe/FeCCSNe)
 Si-shell burning time
 progenitor structure

✓ SN neutrino obs.

- progenitor structure
- BH formation
- bounce time
- multi-dimensional properties (e.g, SASI/LESA)
- explosion energy
- neutrino mass hierarchy
- beyond standard model

How about the combination of these two observation?

Stellar models

23 initial mass models $\sqrt{10M_{\odot}} - 40M_{\odot}$ ✓ solar metallicity \checkmark quasi-steady evo. \Rightarrow HOSHI codes (1D quasi-steady code) \checkmark dynamical evo. \Rightarrow Akaho codes (1D full GR rad+hydro code)

16M

17M

18M

19M

20M

21M

Neutrino emission

✓ quasi-steady evolution: postprocess manner (hydro quantities → NSE composition → v emission) ✓ dynamical evolution: $v_e \Rightarrow$ transport results

 $\bar{\nu}_e, \nu_x \Rightarrow$ postprocess manner

✓ neutrino reaction

Neutrino emission process		Post process	Transport	
pair	$e^- + e^+ \to \nu + \bar{\nu}$		✓	1
EC by free p	$e^- + p \rightarrow n + v_e$		✓	1
EC by nuclei	$(Z,A) + e^- \rightarrow (Z -$	$(1, A) + v_e$	✓	1
β^- decay	$(Z,A) \to (Z+1,A)$	$+ e^- + \bar{\nu}_e$	✓	
PC by nuclei	$(Z,A) + e^+ \to (Z +$	$(1, A) + \overline{\nu}_e$	✓	
eta^+ decay	$(Z,A) \rightarrow (Z-1,A) + e^+ + \nu_e$		✓	
PC by nuclei	$e^+ + n \rightarrow p + \bar{\nu}_e$			1
Brems	$N + N \leftrightarrows N + N + \gamma$	$\nu + \bar{\nu}$		1

Transport calc. include scattering with nuclei/e⁻/nucleon

Neutrino number luminosities

✓ v_e: ECs by free p & nuclei
 → high T, ρ, Y_e
 ✓ v_e: pair & β⁻ decay
 → high T
 relatively low ρ, Y_e

Neutrino spectrum

✓ Average energy is independent of initial mass

Neutrino oscillation & detector info.

✓ terrestrial neutrino flux $F_{\overline{\nu}_e} = pF_{\overline{\nu}_e}^0 + (1-p) F_{\overline{\nu}_x}^0$ $F_{\nu_e} = pF_{\nu_e}^0 + (1-p) F_{\nu_x}^0$

p	$\bar{ u}_e$	ν _e
NO	0.675	0.0234
Ю	0.024	0.3007

✓ detector information detector: SK-Gd, KamLAND, JUNO, DUNE reaction: inverse- β decay ($\bar{\nu}_e$), CC reaction for Ar (ν_e) distance: 200pc

detector	volume	Energy threshold(v)
SK-Gd	32kt	5.3MeV
KamLAND	1kt	1.8MeV
JUNO	20kt	1.8MeV
DUNE	40kt	10 MeV

Neutrino events

✓ PreSN v events: O(10)-O(1000)
 SN v events: O(10⁶)-O(10⁷)

SK events in preSN phase
 high energy threshold
 large mass dependence
 high-energy neutrino info.?

Ex) total event at JUNO

mass	Pre collapse	After collapse
$10 M_{\odot}$	557	4.1×10^{6}
$15 M_{\odot}$	1111	6.1×10^{6}
$24 M_{\odot}$	1423	7.4×10^{6}

Correlation1: average preSN lum. VS important quantities

Correlation2: average lum. VS important quantities PreSN v Important quantities at collapse

SN v

 \checkmark average neutrino number luminosity correlates with neutrino luminosity except μ_4

Summary & future works

Summary

✓ long-term v observation era! → consistent theoretical treatment
 ✓ systematic estimation of neutrino luminosities and spectrum
 from a few days before to a few hundreds ms after bounce
 ✓ PreSN v events: O(10)-O(1000)
 SN v events: O(10⁶)-O(10⁷)

✓ clear correlations between average v lum. and several important quantities

Future works
✓ continuation of current correlation studies
✓ connection to PNS phase
✓ creation of public database