¹²C(α,γ)¹⁶O反応率の不定性が 対不安定型超新星における元素合成と ニュートリノ放出に与える影響

第11回超新星ニュートリノ研究会 11th Supernova Neutrino Workshop @東京大学駒場キャンパス The University of Tokyo, Komaba 2025/03/04

川下大響 Hiroki Kawashimo

東京大学大学院総合文化研究科 The University of Tokyo, Komaba 理化学研究所仁科加速器科学研究センター RIKEN Nishina Center for Accelerator-Based Science

With 森正光 Masamitsu Mori (NAOJ) 芦田洋輔 Yosuke Ashida (Tohoku Univ.) 澤田涼 Ryo Sawada (ICRR, UTokyo Komaba)

Introduction Final fates of stars

NASA

M. Renzo et al. A&A 640, A56 (2020)

- $\sim 8 M_{\odot}$: White dwarf
- ~30(?) M_{\odot} : Core-Collapse supernova (Neutron star, Black hole)
- \sim 140M_o: Black hole (Direct collapse/ Falied supernova)
- $\sim 260 M_{\odot}$: Pair-instability supernova
- 260M_o~: Black hole (Direct collapse?)

Introduction Final fates of stars

Final fate of ZAMS 140-260 M_{\odot} low metal very massive star

→Pair-instability supernova

Complete destruction → No compact object (remnant)

Introduction GW events in PI mass gap

R. Abbott *et al.* arXiv:2108.01045 (2021)

E. Moreno-Méndez et al. MNRAS 522, 1686 (2023).

Introduction PISN best candidate

Introduction ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction rate uncertainty

https://www2.yukawa.kyoto-u.ac.jp/~nuc2021/slides/heger_a.pdf

Introduction ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction rate uncertainty

deBoer et al. Rev. Mod. Phys. 89, 035007 (2017).

Introduction PI mass gap and ¹²C (α , γ)¹⁶O rate

Lower limit of PI mass gap is affected by Nuclear reaction (especially ${}^{12}C(\alpha,\gamma){}^{16}O)$

(GW190521 like) Massive BH formation

Introduction PISNe details (final fate) with rate

Introduction ⁵⁶Ni synthesis

H. Kawashimo et al. MNRAS 531, 2786 (2024)

Motivation Previous work

In this work...

A. Abbott et al. PRL. 125, 101102 (2020)

H. Kawashimo et al. MNRAS 531, 2786 (2024)

We investigate VMSs stellar evolution focusing on neutrino luminosity with changed ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction.

Method Stellar evolution

MESA r24.08.1 (Paxton+ 2011 etc.)

Initial conditions and setups: Marchant+ 2019

- He star (Main sequence terminated + H envelope removed)
- Metallicity $Z = 10^{-3}$
- Initial mass $M_{\rm He}$ => 60 M_{\odot} to 160 M_{\odot} (step 5 $M_{\odot})$

MES

Method Reaction rate

Results Consistency with previous work

Results Peak neutrino luminosity map

Discussion Error range shifting

=> Reaction rate induced error will be smaller

Future work Observation estimation

TABLE II. Numbers of interactions per detector for each mass ordering and a PISN at 10 kpc. These event counts are for the whole neutrino burst. The last two columns represent the number of interactions observed when neutrino oscillations are not taken into account.

Mass	Detector	NMO		IMO		Unoscillated	
		Helm	SFHo	Helm	SFHo	Helm	SFHo
P150	Hyper-Kamiokande	1.77	1.78	1.74	1.75	3.02	3.05
	Super-Kamiokande	0.24	0.24	0.23	0.23	0.40	0.41
	DUNE	0.14	0.14	0.15	0.15	0.25	0.25
	JUNO	0.10	0.10	0.10	0.10	0.17	0.17
P250	Hyper-Kamiokande	52.23	50.08	43.32	41.98	85.70	84.19
	Super-Kamiokande	6.98	6.69	5.79	5.61	11.46	11.26
	DUNE	2.95	2.78	3.17	3.06	5.30	5.20
	JUNO	3.13	3.00	2.48	2.40	5.06	4.97

W. P. Wright et al. Phys. Rev. D 96, 103008 (2017)

How will be changed by reaction rate uncertainty? (for future work)

Summary

Introduction

- PISN is interested in the context of GW obs. (e.g. GW190521) and optical obs. (SN 2018ibb)
- ¹²C(α,γ)¹⁶O plays an important role for PISN explosion

In our work...

- He star evolution with ¹²C(α,γ)¹⁶O reaction (x0.5 ~ x2)
- Neutrino emission time evolution

Result

Discussion

 Error range will be smaller in high mass region

