スーパーカミオカンデでのニュートリノ-原子核反応予測 の精密化に向けた逆運動学実験 An Inverse-Kinematics Experiment for Improving Neutrino-Nucleus Interaction **Prediction at Super-Kamiokande**

Yusuke Mizuno (UTokyo) 水野 裕介 (東京大学) 2025/3/4

The 11th Supernova Neutrino Workshop

Contents

- Introduction •
 - Diffuse Supernova Neutrino Background search at Super-Kamiokande -
 - Neutrino-nucleus interaction —
- Inverse-kinematics experiment •
 - SAMURAI-79 experiment
- Simulation study for the measurement of de-excitation of ¹⁵N* •
 - Excitation energy reconstruction -

Contents

- Introduction •
 - Diffuse Supernova Neutrino Background search at Super-Kamiokande -
 - Neutrino-nucleus interaction —
- Inverse-kinematics experiment •
 - SAMURAI-79 experiment
- Simulation study for the measurement of de-excitation of ¹⁵N*
 - Excitation energy reconstruction

Diffuse Supernova Neutrino Background

- Diffuse Supernova Neutrino Background (DSNB)
 - An accumulated flux of the neutrinos from all past CCSNe

(DSNB flux) \propto (SN rate) \otimes (ν emission from SN) \otimes (Red shift)

- History of star formation —
- Mechanism of SN -
- Neutrino physics —

Super Kamiokande

- Super Kamiokande (SK)
 - 50 kton Water Cherenkov detector
 - from Gadolinium
 - Most stringent upper limit on DSNB flux

M. Harada et al., Astrophys. J. Lett., 951(2):L27 (2023)

Neutrino-Nucleus Interaction

- Background: interactions between atmospheric neutrinos and oxygen nuclei
 - Large uncertainties on prediction
 - Neutral Current Quasi-Elastic (NCQE) scattering

$$\nu + {}^{16}\text{O} \rightarrow \nu + n + {}^{15}\text{O}*$$

$$\nu + {}^{16}\mathrm{O} \rightarrow \nu + p + {}^{15}\mathrm{N}^*$$

- non-NCQE
 - Charged Current Quasi-Elastic (CCQE) scattering -

$$\nu_l + {}^{16}\text{O} \rightarrow l^+ + n + {}^{15}\text{O}*$$

 $\nu_l + {}^{16}\text{O} \rightarrow l^- + p + {}^{15}\text{N}*$

Secondary interaction $n + {}^{16}\text{O} \rightarrow n + {}^{16}\text{O}*$ $n + {}^{16}\text{O} \rightarrow n + p + {}^{15}\text{N*}$ $n + {}^{16}\text{O} \rightarrow 2n + {}^{15}\text{O}*$

Neutrino-Nucleus Interaction

Neutrino-Nucleus Interaction

- De-excitation from highly excited states emits neutrons or other particles
 - Uncertainty on the theoretical model due to a lack of experimental data

- Better understanding of the de-excitation process of ¹⁵N*、¹⁵O*、¹⁶O* is important for reducing the uncertainties
- \rightarrow Inverse kinematics experiment with nuclear beam

e.g. Energy distribution of particles from the de-excitation of ¹⁵N* with various models

Contents

- Introduction •
 - Diffuse Supernova Neutrino Background search at Super-Kamiokande
 - Neutrino-nucleus interaction
- Inverse-kinematics experiment •
 - SAMURAI-79 experiment
- Simulation study for the measurement of de-excitation of ¹⁵N*
 - Excitation energy reconstruction

Inverse-Kinematics

- Strike a nuclear beam into a nucleon target
- The entire system is moving relative to laboratory frame
 - Makes detection of low-energy residual nuclei and de-excitation products (typically < 10-MeV in the CM frame)

Inverse-Kinematics

- of excitation energy
 - Reaction to produce these nuclei:
- e.g. Measurement of de-excitation of ¹⁵N

¹⁵N excitation energy is reconstructed by measuring recoil protons

 $E_{x}(^{15}N)$ (MeV)

Measuring branchings ratio of major de-excitation channels of ¹⁵N^{*}, ¹⁵O^{*}, and ¹⁶O^{*} as a function

Residual nuclei and de-excitation products are detected

SAMURAI-79 Experiment

- RI Beam Factory (RIBF) @ RIKEN Nishina Center
- SAMURAI spectrometer

Liquid H₂ target

Experimental hole

Current Status and Plan

- Proposal was approved at RIBF PAC on Dec. 2024
 - Planing to conduct the first measurements as early as this autumn
- Simulation studies to optimize the detector configuration and running plan
 - Selection method, position of the neutron detector, etc.
- - using the experimental data
 - nucleon-induced reaction

Contents

- Introduction •
 - Diffuse Supernova Neutrino Background search at Super-Kamiokande
 - Neutrino-nucleus interaction
- Inverse-kinematics experiment •
 - SAMURAI-79 experiment
- Simulation study for the measurement of de-excitation of ¹⁵N*
 - Excitation energy reconstruction -

Simulation Study

- Conducting simulation studies for the SAMURAI-79 experiment •
 - Event selection and reconstruction method
 - Optimization of magnetic field and detector configuration
 - Parameter tuning with de-excitation calculation -
- This talk
 - How accurately can we measure the excitation energy of $^{15}N^*$? -

Excitation Energy Reconstruction

- Simulation of excitation energy reconstruction of ¹⁵N
- Two recoil protons are emitted and detector response is simulated
 - Si tracker (STRASSE), Csl calorimeter (CATANA)

Excitation Energy Reconstruction

Four-momentum of ¹⁵N*

$$p_{15N} = p_{beam} + p_{tgt} - p_1 - p_2$$

- p_{beam} : four-momentum of ¹⁶O beam
 - p_{tgt} : four-momentum of target proton
 - $p_{1,2}$: four-momentum of recoil protons

Excitation energy reconstruction

$$E_{\rm x} = \sqrt{(p_{15}{\rm N})^2} - M_{15}{\rm N}$$
 $M_{15}{\rm N}$: mass of ¹⁵N

H. N. Liu et al., Eur. Phys. J. A 59, 6, 121 (2023)

Measurement of Recoil Protons

- Si tracker (STRASSE)
 - Two layers of double-sided Si strip detector (DSSD)
 - Pitch size of 200 µm
 - Can measure momentum direction of recoil protons
 - Angular resolution of ~O(10) mrad
 - Can measure vertex position
 - Position resolution of ~1 mm

STRASSE Outer layer

STRASSE Inner layer

Measurement of Recoil Protons

- Csl calorimeter (CATANA)
 - Array of 140 Csl (Na) scintillation crystal
 - Energy resolution for 662 keV gamma-ray
 - 10% (FWHM) -
 - Can measure kinetic energy of recoil protons -

H. N. Liu et al., Eur. Phys. J. A 59, 6, 121 (2023)

Y. Togano, et al., Nuclear Inst. and Methods in Physics Research B 463 (2020) 195–197

Excitation Energy Reconstruction

50

- Momentum direction: STRASSE
- Kinetic energy: CATANA

H. N. Liu et al., Eur. Phys. J. A 59, 6, 121 (2023)

Other Simulation Studies

- Optimization of magnetic field
- Optimization of detector configuration
 - Position of recoil neutron detectors

Summary

- Precise prediction of nuclear de-excitation process is critical for diffuse supernova • neutrino background search at Super-Kamiokande
- Key process: de-excitation of ¹⁵N, ¹⁵O, and ¹⁶O •
- We plan to conduct SAMURAI-79 experiment •
 - Inverse kinematics experiment @RIKEN RIBF -
 - This autumn (if possible)
- Simulation studies •
 - Excitation energy reconstruction, etc.

Back up

Impact on DSNB

- Assumption
 - Uncertainties -
 - NCQE: 68% → 20%
 - non-NCQE: $36\% \rightarrow 20\%$

DSNB future sensitivity (3σ)

Simulation update plan

Statistical Performance

- ・ 反跳陽子事象の選択効率 (Ex = 30 MeV): 7.7%
- ・ ビームタイムや生成断面積を用いると、この実験で生成できる励起状態の15Nは、35万イベント ・¹⁴N+n (分岐比: 38.1%)のイベントの数は13万イベント
 - 14Nは100%の効率で検出されるとすると、得られる統計数は13万イベント
 - 分岐比は0.3%の統計誤差で測定できる
- ・¹²C+d+n (分岐比: 5.6%)のイベント数は2万イベント
 - ¹²Cの検出効率100%、中性子1個の検出効率12%を用いると、約2400イベント
 - 分岐比は2.0%の統計誤差で測定できる

Atmospheric Neutrino

- 主要な背景事象: 大気ニュートリノ
- 1. 大気ニュートリノと酸素原子核のNCQE反応と、 それに伴って起こる二次反応
 - 先発信号: NCQE反応と二次反応により生じた 原子核からの脱励起ガンマ線
 - 後発信号: NCQE反応と二次反応により生じた — 反跳中性子および蒸発中性子がGdに捕獲された ときのガンマ線
 - 68%の系統誤差

 $\nu + {}^{16}\text{O} \rightarrow \nu + p + {}^{15}\text{N*}$ $\nu + {}^{16}\text{O} \rightarrow \nu + n + {}^{15}\text{O}*$

Atmospheric Neutrino

- 主要な背景事象: 大気ニュートリノ
- 2. 大気ニュートリノ ν_{μ} と酸素原子核のCCQE反応と、 それに伴って起こる二次反応
 - 先発信号: ミューオンの崩壊による電子/陽電子 -
 - 後発信号: CCQE反応と二次反応により生じた 反跳中性子および蒸発中性子がGdに捕獲された ときのガンマ線
- 3. その他 (*v*_eCC etc.)
- (2)とまとめてnon-NCQEで36%の系統誤差

Simulation Setup

- SAMURAIスペクトロメーターの検出器が再現されたGeant4ベースのシミュレーション
- ・ビームと標的の反応の部分は別途計算し、16O(p, 2p)15N反応のみを生成

Simulation Setup

- SAMURAIスペクトロメーターの検出器が再現されたGeant4ベースのシミュレーション
- ¹⁶O(p, 2p)¹⁵N反応のイベントを生成
 - 励起エネルギー固定 (E_x = 10, 30, 50 MeV) -
 - 連続的な励起エネルギー分布 _
 - ¹⁶OのSpectral function —

Benhar et al., Phys. Rev. D, 72(5):053005 (2005)

- ・ LH2標的内での酸素ビームの輸送をGeant4でシミュレーション
- あらかじめ決められた反応点に到達したとき、酸素のエネルギー と運動量をもとに(p, 2p)反応の運動学を計算する
- 酸素ビームの初期条件
 - 運動エネルギー: 200 MeV/u
 - 方向: z軸 (LH₂に垂直な向き)
 - ビームの空間的広がり: $\sigma_{x,y} = 5 \text{ mm}$
- 反応点は右図の分布を再現するように決定
- ・ (p, 2p)反応の計算
 - 1. 励起エネルギー固定 (Ex = 10, 30, 50 MeV)
 - 2. 連続的な励起エネルギー分布 (spectral function)

- 1. 励起エネルギーを固定したイベント生成
- Virtual dissociation: ${}^{16}O \rightarrow {}^{15}N + p_{virtual}$
 - ¹⁶Oは¹⁵Nと質量mp,offの仮想陽子に分けられる -

$$m_{16O} = \sqrt{\vec{P}^2 + (m_{15N} + E_x)^2} + \sqrt{\vec{P}^2}$$

- Ex: ¹⁵Nの励起エネルギー
- 仮想陽子の内部運動量P (16 Oの静止系)を $\sigma = 50$ MeVのガウス分布で決定
- Scattering: $p_{\text{virtual}} + p_{\text{target}} \rightarrow p + p$
 - 仮想陽子と標的陽子の弾性散乱 -
 - 散乱角θ_{CM}: -1 ≤ cosθ_{CM} ≤ 1 で一様
 - 散乱角 *ϕ*: 0° ≤ *ϕ* ≤ 180° で一様

$$^{16}\text{O} + p \rightarrow ^{15}\text{N} + 2p$$

Rest flame of 16O

- 2. 連続的な励起エネルギー分布のイベント生成
- ・ 励起エネルギーと内部運動量の決め方以外は(1)と共通
- Spectral function
 - 原子核中での核子の持つmissing energyと内部 運動量の確率密度関数
 - 励起エネルギー: $E_{\rm x} = E_{\rm miss} S_{\rm p}$
 - S_p : 陽子のseparation energy
 - 内部運動量:絶対値はspectral functionから、
 方向は等方的に決定

- エネルギー保存から運動エネルギーの和は一定
- 反応の位置によって¹⁶0のエネルギーが異なること、および 内部運動量の広がりから分布は広がる
- 励起エネルギーが高いほど、反跳陽子のエネルギーは低くなる

2つの反跳陽子の運動エネルギー (lab系)

Spectral function

,2 [MeV

50 MeV

- 励起エネルギーが高いほど、反跳陽子のpolar angle θ は小さくなる
- ・ 典型的な角度は20° ≤ θ ≤ 60°

2つの反跳陽子のpolar angle θ (lab系)

Spectral function

- 反跳陽子は重心系でback-to-backに放出される
- ・ 実験室系ではビーム軸方向にブーストされ、azimuthal angle ϕ にback-to-back correlation

2つの反跳陽子のazimuthal angle (lab系)

Ex = 10 MeV

30 MeV

50 MeV

Selection Criteria

- Edge cut
 - STRASSEのフレームを通過した陽子のエネルギー損失を 推定することは困難なため、そのようなイベントを除外する
 - 各waferで、ビームに垂直な両端から1mm、 ビームに平行な下流側の端から2 mmを除外
- Track selection
 - STRASSEで検出されたトラックの数 = 2 本
- Vertex selection
 - STRASSEで再構成された 反応点が標的の中にある

検出されたトラックの数

Selection Criteria

- Angular selection
 - CATANAの2つのヒットのなす角が $\phi = 180^{\circ} \pm 36^{\circ}$
- Energy selection
 - CATANAの2つのヒットがともに10 MeV以上 (ガンマ線の除外)

2つの反跳陽子の

ビーム軸に垂直な平面での角度 ϕ (lab系)

Selection Criteria

- Matching of STRASSE and CATANA
 - STRASSEで検出された飛跡を外挿し、ヒットのあったCATANAに到達する
- 励起エネルギーが高いほど選択効率は下がる
 - 反跳陽子の角度 θ が浅くなるため

反跳陽子事象の選択効率 E_x [MeV] Efficiency [%] 10 9.5 30 7.7 50 5.2

励起エネルギーごとの

反跳陽子のビーム軸に対する角度 θ (lab系)

Energy Loss Correction of Oxygen Beam

- 酸素ビームはLH2標的中で運動エネルギーを失う
- 反応直前のエネルギーを、STRASSEで測定した反応点のz座標から推定

 $E_{\rm kin} \, [{\rm MeV/u}] = 200 - 0.3 \times (z - z_{\rm upstream}) \, [{\rm mm}]$

_{*Zupstream*}:標的の上流側の端のz座標

200 MeV/uの酸素ビームを LH2標的に入射したとき、

Energy Loss Correction of Recoil Protons

- 反跳陽子はCATANAの結晶に入射する前に、様々な物質でエネルギーを失う
- - 飛行距離はSTRASSEで測定した運動量方向と反応点から推定
 - 阻止能dE/dxはBethe-Blochの式をもとに計算

$$E_{\text{before}} = E_{\text{after}} + \frac{dE}{dx} \times \Delta x$$
 3 r

Energy Loss Correction of Recoil Protons

42/22

Tail Components

- テール成分の原因は陽子のエネルギー損失を低く見積もってしま。 うため
 - 8.5%の陽子が Etrue Ereco > 2 MeV
- 原因は複数ある
 - 1. Escaped: 陽子がCATANAで全エネルギーを落とさずに逃げる
 - 2. Frame: STRASSEのフレーム部分を通って余分にエネルギー を落としている
 - 3. Reacted: 陽子が途中で二次反応を起こし、その生成物が CATANAに入射する
 - 4. Others: CATANAの結晶同士の隙間に入り、そこでエネルギーを 失った後にCATANAに入射する etc.

Selection Efficiency

Selection

Edge cut & Track selection Vertex selection Angular selection Energy selection Matching of STRASSE and CATANA

Efficiency [%]		
Ex = 10 MeV	30 MeV	50 MeV
33.7	28.6	19.5
33.1	27.9	18.9
17.1	14.1	9.6
15.8	12.7	8.5
9.5	7.7	5.2

Excitation Energy Resolution

True Ex = 30 MeV

Excitation Energy Resolution

運動量方向またはエネルギーを真の値に置き換えて励起エネルギーを再び計算し直す

$$E_{x} = \sqrt{(E_{\text{beam}} + E_{\text{tgt}} - E_{1} - E_{2})^{2} - (\vec{P}_{\text{beam}} - \vec{P}_{1} - \vec{P}_{2})^{2}} - M_{\text{frag}}$$

励起エネルギーの分解能に最も効いているのは、STRASSEの角度分解能であることがわかった 46/22

Continuous Input Distribution

Spectral functionをもとに生成した、連続的な励起エネルギー分布での再構成

(Purity) := (水色枠のイベント数) / (赤枠のイベント数) およそ60~70%

これらの混合を評価し補正することが重要

Excitation Energy Resolution

反跳陽子の真の運動量方向と、測定された運動量方向のあいだの角度

Ekin > 70 MeV

Branching Ratio

- ・ 残留核と中性子を検出することで、¹⁵Nの脱励起チャンネルを測定
 - e.g. ¹⁴Nが検出された → 一意に¹⁴N+n
 - e.g. ¹²Cが検出された
 - ${}^{12}C + t$, ${}^{12}C + d + n$, ${}^{12}C + p + 2n$
 - 中性子検出器で中性子の数を数えることで特定

G4PreCompoundによる ¹⁵ Nの崩壊分岐比		
(10.83	3 < E _x < 50 MeV)	
Channel	Branching Ratio	
¹⁴ N + n		
¹³ C + p + n		
$^{11}B + \alpha$		
$^{6}Li + 2\alpha +$	n	
${}^{12}C + p + 2$	n	
¹² C + d + n		
$^{7}Li + 2\alpha$		
¹⁴ C + p		
¹³ N + 2n		
Others		

49/22

Neasurement of Residual Nuclei

- A/Zの大きい¹⁴C、典型的な¹⁴N、小さい¹³Nの 飛跡をシミュレーション
 - 2.0 Tの磁場により全ての残留核を検出できる

主な残留核と A/Z	Particles	A / 2
	13N	13/
	¹⁴ N, ¹² C, ⁶ Li, α , d	
	13 C	13/
	11B	2.
	14C, 7Li	7/

Measurement of Neutron

- ¹⁴N + nの中性子の測定をシミュレーション
- ・ プラスチックシンチレーター (NEBULA)
 - 120本の棒状のプラスチックシンチレーターが4層に並んでいる
 - 荷電粒子が1本のプラスチックシンチレーター内に落としたエネルギーから、粒子の 種類に応じて発光量を計算
 - ガンマ線のヒットを落とすため、 6 MeVee (electron equivalent) のしきい値

·が4層に並んでいる 一内に落としたエネルギーから、粒子の

Neasurement of Neutron

- 中性子が1個検出されたイベントは全体の12%となった
- 1個の中性子が複数のヒットを作るイベント(cross-talk) が存在
 - Cross-talk rejectionでこのイベントを区別する必要 -(今後の課題)

Conditions

幾何学的アクセプタンス

6 MeVee以上のヒットが1つ以上

6 MeVee以上のヒットが1つ

