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From a massive MS star to a CCSN
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ü The standard scenario toward explosion
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A massive star forms iron core.
→ The core gravitationally collapses.
→ Shock stalls and revives via neutrino heating.
→ Finally, the shock breaks out the stellar surface.

MS star

Note that the time scale of stellar evolution depends on its mass. 
Shown is the case of a ~10 solar-mass star.
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Diversity in CCSN properties

“Typical” explosion energy (Eexp) ~ 1051 erg? Ni yelds (MNi) ~ 0.07 𝑀⊙?
K. Nomoto et al. / Nuclear Physics A 777 (2006) 424–458 427

Fig. 1. The explosion energy and the ejected 56Ni mass as a function of the main sequence mass of the progenitors for
several supernovae/hypernovae.

The new ingredients taken into account in the present nucleosynthesis models are: (i) the
variation of E (hypernovae, normal SNe, and faint SNe), (ii) the mixing and fallback, and (iii)
neutrino processes that affects neutron excess near the mass cut.

3.1. Energy dependence

In core-collapse supernovae/hypernovae, stellar material undergoes shock heating and subse-
quent explosive nucleosynthesis. Iron-peak elements are produced in two distinct regions, which
are characterized by the peak temperature, Tpeak, of the shocked material. For Tpeak > 5 × 109 K,
material undergoes complete Si burning whose products include Co, Zn, V, and some Cr after
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Diversity in CCSN properties

ellipsoids are significantly elongated, because of their mutual
dependence on distances, as indicated by the arrow.9 The
correlation is noticeably less significant, R = 3.0, although
there is no doubt this correlation exists given the large dynamic
range of the parameters. The Bayes factor is B 9 107» ´
implying strong support for the correlation. More importantly,
we discover a statistically significant intrinsic width of the
relation 0.12 0.02

0.03S = -
+ , which implies a scatter of 0.2 dex in

MNi for a fixed Lpl. Furthermore, neglecting the off-diagonal
terms or the intrinsic width of the relation can bias the inferred
slope (e.g., Tremaine et al. 2002). Neglecting the off-diagonal
terms increases the slope by about 0.19 with a corresponding
change in the intercept. Not accounting for the intrinsic scatter
leads to slopes of 1.83 0.06

0.07
-
+ and 1.56 0.11

0.12
-
+ for the full and

diagonal covariance matrix, respectively.
Since Lpl does not have an immediate physical interpreta-

tion, we show MNi as a function of Eexp in Figure 2 for the
scaling relations of Litvinova & Nadezhin (1985) and Popov
(1993). The relative position of the majority of the data points
remains unchanged when compared to the right panel of
Figure 1, which indicates that Lpl is a good proxy for Eexp.
There are small differences between the two scaling relations,
but the relative positions of the majority of the points are
unchanged. For the Litvinova & Nadezhin (1985) coefficients,
we find that the Eexp–MNi correlation is less significant than Lpl
–MNi with R = 2.8 and 3.7 for the full and diagonal covariance
matrix, respectively. The Bayes factor is B 1.7 105» ´
indicating strong correlation, but weaker than Lpl–MNi. The
inferred intrinsic width orthogonal to the line is slightly higher
than in the Lpl–MNi correlation but again statistically

significant, 0.14 0.03
0.04S = -

+ or 0.25 dex in MNi for fixed Eexp.
The intrinsic width from the Popov (1993) calibration is

0.19 0.04
0.05S = -

+ .
The intrinsic width of the Eexp–MNi correlation could be due

to the γ-ray trapping efficiencies Ag varying among SNe with
the same Eexp. Since the exponential decay luminosity is

proportional to A t t[1 exp( )]exp( )Ni
2

Ni t- - D -Dg (e.g.,
Chatzopoulos et al. 2012; Nagy et al. 2014), where tNiD is

the time elapsed since the explosion, SNe with significant γ-ray
leakage not only appear fainter at any point of this phase but
also decay faster (Anderson et al. 2014), and their light curves
diverge from those of SNe with full γ-ray trapping over time.
Since our sample contains SNe with decay rates compatible
with full trapping as evidenced by the exponential decay slopes
(PP15), the 0.25 dex difference in the inferred MNi at

t 200NiD = days should increase to about 0.7 dex at
t 400NiD = days, if the scatter is due to γ-ray leakage in some

objects.
To test whether the late light curves of SNe in our sample

diverge with time due to incomplete γ-ray trapping in some
objects, we show the weighted standard deviation of the
bolometric magnitude difference between the plateau and the
exponential tail as a function of the time elapsed since
explosion, tNiD , in the left panel of Figure 3. We see that the
bolometric magnitude dispersion increases from 0.37 mag at

t 200NiD = days to 0.45 mag at t 400NiD = days, much less
than what we would expect if some SNe showed full trapping
and some only partial. This means that the slopes of the
exponential decay are very similar among our objects and are
compatible with full γ-ray trapping.
For the sake of completeness, we test what is the importance

of when is the plateau luminosity determined. We show the
weighted standard deviation of the bolometric magnitude
difference between the plateau and the exponential tail but
now as a function of tplD in the right panel of Figure 3. For
small tplD , the dispersion is relatively high, presumably due to
differences in the properties of the shock-heated ejecta shortly
after shock breakout, but for t 40 dayspl D the dispersion
remains approximately constant. We conclude that the intrinsic
width of the Eexp–MNi correlation is robust with respect to
when exactly the plateau and exponential decay tail luminos-
ities are measured, and that it is not due to variations in the γ-
ray leakage.10

Figure 2. Nickel mass MNi as a function of explosion energy Eexp, with the confidence ellipses properly visualized. The colors of the individual supernovae are the
same as in the right panel of Figure 1. We use the scaling relations of Litvinova & Nadezhin (1985, left panel) and Popov (1993, right panel).

9 Note that the uncertainties in absolute magnitude and expansion velocity
(e.g., Poznanski 2013) should not be very correlated, unless the velocities were
used for an estimate of the distance modulus, in which case there should be a
significant correlation.

10 An additional piece of anecdotal evidence against significant γ-ray leakage
comes from comparing SN2013am and SN2005cs, which have nearly identical
luminosities for the first ∼70 days. However, SN2013am has a noticeably
shorter tP and a higher inferred MNi than SN2005cs. This implies that
SN2013am has slightly smaller Eexp and significantly smaller Mej than
SN2005cs (Figure 4). If γ-ray escape were important, we would expect smaller
inferred MNi and faster exponential decay in SN2013am than in SN2005cs.
Yet, the exponential decay slope is almost the same in both objects (Zhang
et al. 2014) and SN2013am has higher inferred MNi.
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Martinez et al. (2022)Pejcha & Prieto (2015)

“Typical” explosion energy (Eexp) ~ 1051 erg? Ni yelds (MNi) ~ 0.07 𝑀⊙?
Recent observations suggest that Eexp & MNi is distributed over more than one order of magnitude.
What is the origin？

→ systematic study.



ü 3D simulations after core bounce:

• Remap from 2D to 3D at 10 ms after bounce.

• 600(r)x64(θ)x128(φ) grids
(0 ≦ R ≦ 104 km, 0 ≦ θ ≦ π , 0 ≦ φ ≦ 2π).

ü Fe core collapse to core bounce in 2D:

• B-field： ,  

B0 = 1010 [G], r0 = 103 km (fixed).

• 600(r)x128(θ) grids 
(0 ≦ R ≦ 104 km, 0 ≦ θ ≦ π).

4 J. Matsumoto et al.

opacity set of Bruenn (1985). In this run, 20 energy groups that logarithmically spread from 1 to 300 MeV are employed. We use the equation
of state (EOS) by Lattimer & Swesty (1991) (incompressibility K = 220 MeV).

We employ the non-rotating presupernova progenitors of 15.0, 18.4 and 27.0 M� of Woosley et al. (2002). As for the initial configuration
of the magnetic fields, we assume a simple topology following Suwa et al. (2007); Takiwaki et al. (2014); Obergaulinger et al. (2014). The
magnetic field is given by a vector potential in the �-direction of the form

A� =
B0

2
r

3
0

r3 + r
3
0

r sin ✓ , (9)

where r0 = 1000 km characterizes the topology of the field. The magnetic field is uniform when the radius, r, is smaller than r0, while it
is like dipole field when r is larger than r0. B0 determines the strength of the magnetic field inside the core (r < r0). In this study, we set
B0 = 1010, 1011 or 1012 G. The model name is labelled as ‘s27.0B10’, which represents the 27.0 M� model with B0 = 1010 G. We choose
s27.0B10 as a fiducial model because 2D (albeit, non-magnetized) results using this progenitor are available in the literature (e.g. Hanke et al.
2013; Summa et al. 2016). We follow the dynamics up to tfin ⇠ 400 � 500 ms after bounce, depending on the progenitor models. In most of
the models, we terminate the simulations at the final time seeing that the diagnostic explosion energies are greater than 1050 erg. We leave
the more long-term simulation for future work.

The calculations are performed in axisymmetry. Therefore, the derivatives with respect to the �-direction (i.e. @@� ) are taken to be zero in
the governing equations when we run 2D simulations. The grid spacing in this work is the similar to that of 2D runs in Takiwaki et al. (2014).
In the radial direction, a logarithmically stretched grid is adopted for 480 zones that cover from the center up to 5000 km, whereas the polar
angle in the ✓-direction is uniformly divided into �✓ = ⇡/128. The innermost 10 km are computed in spherical symmetry to avoid excessive
time-step limitations. Reflective boundary conditions are imposed on the inner radial boundary (r = 0), while fixed-boundary conditions are
adopted for the outer radial boundary (r = 5000 km) except the gravitational potential that is inversely proportional to the radius at outer
ghost cells. A reflecting boundary condition is imposed on the 2D symmetry axis (e.g. the z-axis in our 2D run). A numerical resolution test
is given in Appendix E.

3 RESULTS

We first describe overall evolution of the magnetized and non-rotating stellar core for our fiducial model (s27.0B10) in Section 3.1. Then
in the subsequent sections, we move on to present results focusing on the impact of the initial magnetic field strength on the postbounce
evolution. The progenitor dependence of the shock evolution is presented in Section 3.4.

3.1 Overall evolution of non-rotating and magnetized core-collapse model of a 27M� star

Fig. 1 shows the temporal evolution of the spatial distribution of the entropy per baryon and magnetic field for the fiducial model (s27.0B10).
The 2D color map of the entropy per baryon is illustrated in the negative region of x (x < 0). The structure of magnetic field lines is drawn by
a line integral convolution method (Cabral & Leedom 1993) in the positive region of x (x > 0). The color depicts the strength of the magnetic
field. Panel (a), (b), (c) and (d) correspond to the time tpb = 100, 200, 300 and 500 ms after bounce, respectively. Hereafter tpb denotes the
postbounce time.

The core bounce occurs after ⇠ 200 ms (i.e. tpb = 0) after the start of the simulation, leading to the shock formation at the radius of ⇠ 20
km. The bounce shock stalls at r ⇠ 140 km around tpb = 100 ms, and then turns into the standing shock (see also, the top left panel of Fig. 2).
When the shock stalls, the structure of the magnetic field lines is like a split monopole as shown in the right-half panel of Fig. 1a. Before
the shock stall (tpb . 100 ms), the flow is almost restricted in radial direction. The split-monopole like configuration is made because the
magnetic field is "frozen-in" with respect to the matter motion. The electric resistivity of the magnetic field is so small that it is disregarded in
this work, which can be well justified in the CCSN environment (Sawai et al. 2013a). The initial vector potential (equation 9) gives magnetic
loops on the equatorial region at around r ⇠ 1000 km. These magnetic loops also gravitationally collapse (dragged by matter infall) and are
shown on the equatorial plane (x & 30 km and z = 0) in Fig. 1a. The center of loops is located at around x ⇠ 45 km and seen as a small
blueish region.

As the (maximum) shock radius starts to gradually shrink after tpb & 100 ms (e.g. Fig. 2a), it gradually deviates from the shock trajectory
of the corresponding 1D model (black solid line in Fig. 2a). This marks the growth of non-spherical motions in the postshock region. One
can clearly observe the deformation of the shock in the left-half panel of Fig. 1b at tpb = 200 ms. In Fig. 1b, one can also see the penetration
of the magnetic field lines (thin red curves in the right-half panel) into the postshock region (high entropy region in the left-half panel), which
makes the field configuration much more complicated than that outside the shock. In our ideal MHD simulations, the field amplification in
the postshock region occurs due to compression and stretching of the magnetic field, which is governed by the non-radial matter motions.
Note in our 2D models that we do not attempt to di↵erentiate the origin of the "non-radial" motions either originating predominantly from
the SASI or neutrino-driven convection because the SASI is liable to be overestimated in 2D compared to 3D simulations (e.g. Hanke et al.
2012, 2013; Fernández et al. 2014).

Fig.1c shows a snapshot after the shock revival (tpb = 300 ms, see also Fig. 2a). The low-mode deformation of the shock and the
formation of the high entropy region (colored by red in the entropy plot) is a common feature of 2D neutrino-driven explosion models. The

MNRAS 000, 1–22 (2020)

Systematic 3D MHD simulations of CCSNe - KN+(2025), MNRAS, 536, 280

ü 3DnSNe_MHD (Matsumoto+’20): 3-flavor ν-radiation (IDSA) MHD code + LS220 EoS.

ü Progenitors：9-24 𝑴⊙ non-rotating models from Sukhbold+(2016) (16 models).



Systematic 3D MHD simulations of CCSNe - KN+(2025), MNRAS, 536, 280

• Movies (entropy map)
𝑀"#$% = 9-24 𝑀⊙,

16 EXPLODING models.



ü Sukhbold et al. (2016) ApJ, 821, 38

Progenitor structure and shock evolution

Density drops at the Si/O interface have a 
strong impact on shock evolution. 1
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ü Expected neutrino detection events by Super-Kamiokande (SK).
Assuming the distance to the SN D = 10 kpc.
SK: fiducial volume = 22.5 kton, threshold energy = 7 MeV.
Only IBD is considered.
The error bands are root-N Poisson.
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ü In the very early phase (< 30ms) the 
detection number is almost identical.

ü But it soon becomes distinguishable, 
reflecting the different accretion history.

ü The sudden drops at ~150ms in the models 
s11 and s18 are marginally detectable.

ü Caution! No oscillation is considered here.



Neutrino detection event
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Neutrino detection events at HK via IBD (νe+p → n+e+),
assuming D = 10 kpc and isotropic nu emission.

_

SK+T2K joint analysis 
implies normal-order 
mass hierarchy? 
(arXiv:2405.12488)



Angle-dependent neutrino luminosity (Tamborra+2014)
ν

dA
γObserver @D

dAʼ

Given the neutrino intensity I, Neutrino flux 𝐹′ and 
corresponding luminosity 𝐿′ for an observer at distance D
and angle γ is

𝐿& = 4𝜋𝐷'𝐹& = 4𝜋* 𝐼 d𝐴′ ,

where d𝐴& = cos 𝛾 d𝐴 is a projected area on a sphere 
surrounding the neutrino source, and the corresponding 
solid angle dΩ′ = cos 𝛾 d𝐴/𝐷'.

We use the following simple relations in 1D neutrino 
transport (Mueller,Janka,Annop+12;Tamborra+14):

𝐼 𝛾 = 𝑎𝐸 + 𝑏𝐹 cos 𝛾, 𝐹 = 𝑓𝑐𝐸,
where E is energy density.
Simple algebra gives 𝑎 = (

)*
, 𝑏 = +

)*
, and 𝑓 = ,

'
. 

Then we have 𝐼 𝛾 = ,
'*

1 + + -./ 0
'

𝐹 and finally obtain
𝑳&(γ) = 𝟒𝝅∫ 𝑰𝐝𝑨& = 𝟐∫ 𝟏 + 𝟑 𝐜𝐨𝐬 𝜸

𝟐
𝐜𝐨𝐬 𝜸𝑭𝐝𝑨

R

γ

I(γ)

(Integrated over a semisphere).



Angle-dependent neutrino luminosity - s9
An example of light progenitors (s9).

• >10%-level deviation after ~250 ms.
• Clear & stable anti-correlation between νe and νe.
• A small deviation in νx emission.

_

νe

νx

νe
_



Angle-dependent neutrino luminosity - s24
An example of massive progenitors (s24).

• Almost uniform in the first ~130 ms.
• Possible anti-correlation between νe and νe, but unstable.
• A small deviation in νx emission, as in the model s9.

_
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Neutron star kick
The Astrophysical Journal, 755:141 (7pp), 2012 August 20 Becker et al.

incorporated all the current wisdom regarding telescope and
instrument performance.

The fitted X-ray positions of RX J0822−4300 (labeled as NS)
and that of the three fiducial reference stars are listed for each
of the four observations in Table 3, along the respective HRC
counting rates.

2.2. Transformation to the World Coordinate System (WCS)

In order to determine the position of RX J0822−4300 relative
to the three reference stars we assume a linear transformation
with four free parameters: translations in right ascension, tRA,
and in declination, tDecl, a scale factor r, and a rotation of the
detector θ . The transformation can be expressed in the following
way:

⎛

⎜⎝

xA −yA 1 0
yA xA 0 1
xB −yB 1 0
yB xB 0 1

⎞

⎟⎠

⎛

⎜⎝

r cos θ
r sin θ
tRA
tDecl

⎞

⎟⎠ =

⎛

⎜⎝

x ′
A

y ′
A

x ′
B

y ′
B

⎞

⎟⎠ , (1)

where xi, yi is the x-, y-positions of star i in the HRC image at
epoch T and x ′

A, y ′
A are the corresponding optical coordinates

of star i. These coordinates are given by the UCAC3 catalog
and are corrected for proper motion (see Tables 2 and 3). We
used stars A and B to calculate the transformation and star C to
verify the resulting parameters. Multiplying Equation (1) with
the inverse of the matrix leads to the missing parameters tx, ty,
r, and θ . The position of RX J0822−4300 at epoch T can then
be calculated straightforwardly by the following equation:

(
x ′

NS
y ′

NS

)
=

(
r cos θ −r sin θ
r sin θ r cos θ

)(
xNS
yNS

)
+

(
tRA
tDecl

)
. (2)

Calculating the transformation gives a rotation angle θ of
−0.◦061(31), 0.◦076(28), −0.◦018(27), and 0.◦000(29), and a
scale factor r of 1.00059(60), 1.00182(52), 1.00044(40), and
1.00033(45) for the epochs 1999.97 (HRC-I), 2001.07 (HRC-S),
2005.31 (HRC-I), and 2010.61 (HRC-I), respectively (numbers
in parentheses represent the uncertainty in the final digits). The
values of r and θ for the HRC-I observations match within the
1σ error and are significantly smaller than these for the HRC-S
observation. tRA and tDecl used in the translations of the position
of RX J0822−4300 from the image to the world coordinate
system are all below 0.′′5. Indeed, the largest shift is 0.′′29 for the
y-coordinate in the 2010 HRC-I observation. The positions of
the neutron star in the four epochs are listed in Table 4.

To estimate the error in the coordinates of RX J0822−4300,
we used the Gaussian elimination algorithm to solve
Equation (1) for tx, ty, r, and θ . We then inserted these pa-
rameters into Equation (2). This results in equations for x ′

NS
and y ′

NS that depend only on values with known errors: xA, yA,
xB, yB, x ′

A, y ′
A, x ′

B , y ′
B , xNS, and yNS. The uncertainties in these

two neutron star coordinates at each epoch can then be derived
through straightforward error propagation:

σx ′
NS

=
[(

∂x ′
NS

∂xA

)2

σ 2
xA

+
(

∂x ′
NS

∂yA

)2

σ 2
yA

+ · · ·

+
(

∂x ′
NS

∂yNS

)2

σ 2
yNS

]1/2

. (3)

The same formula is applicable for σy ′
NS

. The corresponding
values are listed in parentheses in Table 4.

2010

2005

1999

1 arcsec

Figure 2. This enlargement of the immediate region of RX J0822−4300 shows
the data from all three HRC-I epochs (after alignment to a common coordinate
system) in different colors. The neutron star’s motion is apparent.

To check the robustness of our results we applied several
cross-checks. We first repeated the transformation using the
fiducial points B & C rather than A & B. The positions of
RX J0822−4300 obtained this way are also listed in Table 4
for comparison. As can be seen, they have larger errors than
using the reference stars A & B (because star C has only a
few counts at each epoch) but match the other positions within
the 1σ uncertainty range. Using the combination of stars A
& C rather than A & B leads to large errors, as A and C are
located quite close to one another and are in approximately the
same direction relative to RX J0822−4300. In a third test, we
calculated the position of RX J0822−4300 by applying only a
two-dimensional translation of the four images. We weighted
the shifts of the three reference stars inversely as the variance
and calculated their mean for every epoch. The results for the
position of RX J0822−4300 differ for the HRC-I observations
by at most 0.4 pixels from the ones calculated according to
Equation (1). For the HRC-S image the difference in x is
≈1 pixel, though this is mainly due to systematic offsets between
the HRC-S and HRC-I detectors. This is also seen if we compare
the scale factors and rotation angles that we computed for the
HRC-I and HRC-S observations.

2.3. The Proper Motion of RX J0822−4300

To measure the proper motion of RX J0822−4300 over a
baseline of 3886 days, we used all four positions obtained from
the observations between 1999.97 and 2010.61 and fitted a linear
function to x ′

NS(T ) and y ′
NS(T ) separately:

x ′
NS(T ) = µxT + constx, (4)

y ′
NS(T ) = µyT + consty. (5)

In these fits the projected proper-motion coordinates µx

and µy were taken as free parameters for which we find
µRA = −64 ± 12 mas yr−1 and µDecl = −31 ± 13 mas yr−1,

4

RX J0822−4300 from Becker+ʼ12

22 Katsuda et al.
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Figure 9. Left: NS kick velocities (filled circles) and the CoM velocities (open boxes) with the origin at the CoE or at the CoX
for Kes 73, RCW 103, and N49, for which CoEs are not available. All opening angles between the CoM and the NS are large,
which means that CoMs and NSs are located in opposite directions of the explosion points. The magnetars in Kes 73 and RCW
103 do not possess higher kick velocities than the other NSs. Right: Same as left but the NS and CoM positions are rotated
such that the NS positions are aligned upward, and the velocities are normalized by the NS speeds.
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FIG. 7. Mass accretion rate at a radius of 200 km for all
models.

masses vary between 1.38M� and 1.87M� with individ-
ual masses on par with other recent 3D simulations [1, 3].
Aside from the s14 model, which shows a PNS growth
rate of 0.3M� s�1 at the end of the simulation, and to
a lesser extent the s18 model, where the PNS mass is
growing at a rate of 0.12M� s�1, PNS masses are quite
well converged on the timescale of the simulations.

Using the cold NS binding energy of Lattimer and
Prakash [65], and following Müller et al. [1], we estimate
the gravitational mass of the PNS with,

Mgrav ⇡ Mby � 0.084M�

✓
Mgrav

M�

◆2

. (4)

The gravitational masses range between 1.25M� and
1.64M�.

The lower panel of Figure 8 shows the PNS radius
evolution. Initially reaching between about 65 � 75 km
shortly after bounce, the PNS in all models shrinks in a
very similar manner as time progresses.

B. Remnant kick

In 3D explosions, asphericities in the collapse and ex-
plosion may transfer a net momentum to the compact
remnant. The net momentum imparted to the remnant
comes from both the hydrodynamic asymmetries [66], as
well as asymmetries in the neutrino emission. Kicks from
hydrodynamic asymmetry tend to be significantly larger
than those from neutrino emission [4]3.

3 Coleman and Burrows [67] find the reverse ordering, with the
neutrino kicks several times the corresponding hydrodynamic
kick, but this may be a result of their choice of momentum flux
surface [68].

FIG. 8. Top panel: PNS masses in terms of both baryonic
(solid) and gravitational (dashed) masses as a function of
post-bounce time for all models. Lower panel: PNS radius,
also as a function of post-bounce time.

Focusing first on the hydrodynamic component of the
kick, the velocity imparted to the remnant neutron star
is calculated by conservation of linear momentum. If the
initial net momentum is assumed to be zero (which is
valid since the star is stationary centered on the reference
frame of the computational grid), then the net momen-
tum outside the neutron star must cancel the momentum
of the remnant entirely. This momentum, divided by the
neutron star mass, gives the kick velocity, where the neu-
tron star is defined by the region with ⇢ > 1011 g cm�3;
i.e.,

vhydro
kick = �

1

MPNS

Z

⇢<1011 g cm�1

v⇢dV, (5)

where MPNS is the baryonic mass of the PNS. The esti-
mation of the kick by momentum conservation has been
tested against alternative methods in the past; see Ap-
pendix A of Scheck et al. [66]. Some previous works, for
example Wongwathanarat, A. et al. [69], use the baryonic
PNS mass in this calculation, while others, such as Janka

ü Hydrodynamic kick.

assuming the conservation of the matter 
momentum.

9

FIG. 9. Magnitude of kick vector by hydrodynamic momen-
tum conservation (solid) and with the addition of neutrino
asymmetry (dotted). Final values are listed in Table II.

and Kresse [4], use the gravitational mass. We have used
the baryonic mass, which is arguably more accurate for
estimating the asymptotic kick velocity, since later PNS
cooling via isotropic neutrino emission in the PNS frame
does not impact the kick velocity due to Lorentz invari-
ance.

The contribution of asymmetric neutrino emission to
the PNS kick is again calculated by means of conservation
of momentum, but this time via time integration of the
neutrino momentum flux at the surface, S, of a sphere
of radius 100 km. Assuming forward beaming for the
neutrino radiation field on this surface, these neutrino
fluxes, F⌫ , induce a change in velocity of

v̇⌫
kick = �

1

cMPNS

Z

S

�
F⌫e + F⌫̄e + F⌫x

�
dA, (6)

which is then numerically integrated using a straightfor-
ward trapezoid method.

The magnitudes of the PNS kicks are shown in Fig-
ure 9. We also present trajectories of the PNS kick di-
rection v̂kick during the simulation in the left panel of
Figure 10.

The kicks are naturally small during the pre-explosion
phase. Sinusoidal oscillations shortly after bounce corre-
spond to the sloshing motion of the SASI found in most
models. Once the explosion begins, the kick grows and
its direction evolves within a relatively small solid angle;
this direction is apparently random, with no correlation
to the grid axis.

For the exploding models, the kick increases steadily
over the simulation, with no indication of flattening out
on these timescales. Burrows et al. [3] suggest several
seconds of the explosion may be required for such quan-
tities to saturate, so the ongoing increase of our kick ve-
locities is not surprising. The kicks are typically on the

order of several tens to a few hundred kilometers per
second. Most of this is due to the hydrodynamic mo-
mentum transfer and are compatible with previous re-
sults for non-magnetic 3D supernova simulations [e.g.,
1, 4, 68, 69]. However, we do not see large kicks (e.g.
over 1000 km s�1) in our limited sample.
Our neutrino-induced kicks are subdominant and typi-

cally on the order of several tens of kilometers per second.
The majority of this comes from the ⌫e and ⌫̄e contribu-
tions, which are typically of a similar magnitude (tens of
km s�1); the electron antineutrino provides the majority
of the neutrino-induced kick in the s18 and s24 models,
exceeding the contribution of electron neutrinos by a fac-
tor of 2. Heavy-flavor neutrinos are less important for the
kick, imparting only a few km s�1. The neutrino kicks ob-
tained are slightly low compared to Janka and Kresse [4]
and Burrows et al. [68], and much lower than Coleman
and Burrows [67], but as mentioned previously, this may
not be an accurate comparison due to the method used
in [67] to calculate the respective momentum contribu-
tions of matter and neutrinos. Our estimates are also a
lot larger than the neutrino kicks of Wongwathanarat, A.
et al. [69].
It is notable that the solid and dotted lines in Figure 9

for the s18 and s24 models, representing the kick veloc-
ity without and with the e↵ects of asymmetric neutrino
emission respectively, are very similar. This is despite, for
instance, neutrinos kicking the PNS in model s18 by over
60 km s�1. This suggests that the net kick from neutri-
nos is perpendicular to the hydrodynamical kick; indeed,
the angle between the neutrino and hydrodynamical kick
vectors in the s18 model is about 80�. For the s24 model,
the kicks are almost perfectly perpendicular. In the other
two exploding models, the angles are 60� and 140� for
s9.5 and s11.5, respectively.
Janka and Kresse [4] describe two mechanisms by

which matter asymmetry can contribute to neutrino
asymmetry, thereby impacting any approximate align-
ment of the two kicks. Firstly, accretion downflows onto
the PNS can power additional neutrino luminosity in the
direction of the downflow. Secondly, dense non-accreting
downflows can ‘block’ neutrino momentum flux by ab-
sorption, with the associated momentum later returned
to the PNS via the hydrodynamic mechanism; this has
the e↵ect of diminishing the neutrino kick in the direc-
tion of the dense region. These mechanisms potentially
explain some alignment/antialignment of the kick vec-
tors. Hwever our results – and those of Janka and Kresse
[4] – indicate a slight preference for approximately per-
pendicular matter and neutrino kick vectors.
Figure 11 shows the spatial distribution of electron

neutrino energy fluxes integrated over the entire simu-
lation time (i.e., the fluence) in the s18 model. There is
a variation of up to 20% between the minimum and max-
imum fluence, and the angular extent of the fluctuations
are quite large – on the order of tens of degrees latitude
and longitude. Electron antineutrinos and heavy-flavor
neutrinos exhibit similar distributions.

ü Neutrino-driven kick.

assuming ray-by-ray (only radial) transport 
of neutrino.

Neutron star kick
NSs are “kicked” at the explosion → correlated to anisotropic ejection of the matter and neutrino.



Time evolution of NS kick velocity
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NSs are “kicked” at the explosion → correlated to anisotropic ejection of the matter and neutrino.
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Origin(s) of the anisotropic neutrino emission
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Not yet converged at tpb = 500ms.
→ long-term simulation is necessary.

Correlation between vPNS and (Eexp/MPNS)1/2

NSs are “kicked” at the explosion → correlated to anisotropic ejection of the matter and neutrino.

KN+2025

Long-term simulation is necessary!

hydro.

Review
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5.3. Kick velocity

The measured kick velocities of 293 NSs are plotted in 
 figure  29. See [50, 241, 345] for comparison with various 
models of velocity distribution. The typical kick velocity of 
NSs of a few hundred km s−1 is by an order of magnitude 
faster than the observed velocity of normal stars, which ranges 
between 10–30 km s−1. The pulsar kick mechanism is impor-
tant to understand the formation of NSs in SN explosion [369]. 
Asymmetric explosion of SNe [118, 370] and anisotropic 
emission of the neutrinos from the NS [92, 842], among others, 
are proposed as the kick mechanism. An alignment of the kick 
direction and the rotation axis of a NS is also observationally 
suggested [455, 589, 594, 673], which may be related to late-
time accretion [580]. Though the number of the magnetars with 
the known kick velocities is still limited to 4 (SGR 1806−20, 
SGR 1900+14, XTE 1810−197, and PSR J1550-5418; listed 
in table 4; see also figure 29), their velocity is consistent with 
those of canonical pulsars and hot young isolated NSs.

Table 3. List of progenitor masses estimated from magnetar-associated SNRs.

Source name Mass (M⊙) Reference

Magnetars

SGR 1806−20 48+20
−8

[85]

∼50 [250] Young massive star cluster (age  ∼4 Myr)
1E 2259+586 ∼40 [584] Ejecta of SNR CTB109
CXO J1647−455 ∼40 [581] Young massive star cluster (age  ∼4 Myr)

[698]
1E 1048.1−5937 30–40 [267] Stellar wind bubble blown by the progenitor
SGR 0526−66 26 [805] Ejecta of SNR N49 in LMC
1E 1841−045 >20 [449] Suggested by abundances of SNR Kes 73
SGR 1900+14 17 ± 2 [181] Aged star cluster (∼14 Myr)

Figure 29. Transverse velocities of 293 pulsars with known velocities listed in the ATNF catalogue based on distance measurements 
[522]. Measurements of four magnetars and four young bright x-ray isolated NSs are shown in the red bins and blue line, respectively (see 
table 4).

Table 4. List of known kick velocities of magnetars.

Source name
Linear transverse 
velocity Reference

Magnetars

4U 0142+61 102 ± 26 km s−1 [768]
SGR 1900+14 130 ± 30 km s−1 [767]
1E 2259+586 157 ± 17 km s−1 [768]
XTE 1810−197 212 ± 35 km s−1 [329]
1E 1547.0−5408 280+130

−120 km s−1 [191]

SGR 1806−20 350 ± 100 km s−1 [767]

Young bright XINS

4 sources (e.g. RX J1856.5−3754) 350 ± 180 km s−1 [774]

CCO

RX J0822−4300 (SNR Puppis A) 672 ± 115 km s−1 [69]

Rep. Prog. Phys. 82 (2019) 106901

Enoto+(2019)

Observations:
Typically 300-500 km/s, some NSs > 1000 km/s.

Observed NS vkick distribution



Summary

üSystematic 3D simulations of CCSNe (Burrows+ʼ20;ʼ24, KN+ʼ25).

üNeutrino detection event curve ~ mass accretion history ~ progenitor structure.

üAnisotropic neutrino emission:
(tpb < ~200ms) < a few %, no specific direction.
(later) > 10% in νe and νe luminosity.
Lepton-number emission self-sustained asymmetry (LESA) 

at least in small-mass models.

üDiversity in neutrino detection number:
factor of ~2 from progenitor dependence,
~-40% from neutrino oscillation,
~±10% from anisotropic neutrino emission.

üPossible alignment between hydro-vkick and nu-vkick of NSs.

_


