Search for neutrinos from Failed SN in Super-kamiokande スーパーカミオカンデにおけるFailed SN由来のニュートリノ探索

岡山大学 中西史美 第11回超新星ニュートリノ研究会 2025年3月3日@東京大学駒場キャンパス

- Final phase of massive star
- Neutrino emission in black hole formation
- M31-2014-DS1
 - Evolution of the luminosity
 - Estimation of black hole formation
- Neutrino Search in SK
 - Expected neutrino event
- Analysis plan for M31-2014-DS1
- Summary

Contents

Final phase of massive star

Core collapse R ~ 1000 km

PNS

Shockwave

propagation

Core bounce

Failed SN

Shock break out (SBO)

Fallback SN

Neutrino emission of failed SN

- Neutrinos are emitted during core-collapse
- Neutrino emission is stopped when a black hole is formed

Core-collapse

Envelope

Neutrino emission of failed SN

- Neutrino emission is more luminous and hotter
- The neutrino emission depends on the time from bounce to black hole formation

Neutrino observation is essential to understand black hole formation mechanisms

Black hole formation

- After black hole formation, dust is heated by shock
 - \rightarrow emitting infrared radiation
- The timing of black hole formation can be
 - determined by neutrino observation

M31-2014-DS1

- Failed SN was discovered at M31
 - Hydrogen-depleted supergiant
 - Distance: 784 kpc
 - Stellar mass : $\approx 20 M_{\odot}$

K. De et al. 2024

Evolution of the luminosity in Failed SN 8

- Mid-infrared observation (NEOWISE)
 - Increased in MIR flux by ~50% over 2 years starting in 2014
- Optical & near-IR observation (MMT)
 - Undetected in optical & near-IR (NIR) imaging observations in 2023

Estimation of black hole formation

- The inner shell radius decreased around 2017
- Considering the brightening of INR, it is estimated that the black hole formed between 2014 - 2017

Neutrino search in SK

- Target: Inverse beta decay (IBD) $\bar{\nu}_e + p \rightarrow e^+ + n$
- Largest cross section until 30 MeV than the other interaction
- Pure water phase in SK
 - Neutron tagging efficiency: ~20%

Expected Neutrino Events

in ordinary SN

	10 kpc	1 Mpc
SN rate (/year)	~0.01	~0.1
Expected ${\cal V}$ event in SK (event/ ordinary SN)	$O(10^3)$	$\mathcal{O}(10^{-1})$
Expected $ u$ event in SK (event/ Failed SN)	$O(10^4)$	$\mathcal{O}(1)$

Background event in SK

- Energy distribution of background event in fiducial volume
- There are many radioisotope backgrounds in the low energy region
- Above 8 MeV, background rate is low by strict background reduction cuts
- Main background above 20 MeV
 - Decay-e from Invisible muon
 - Charged current reaction from atmospheric neutrinos

Previous study

- SN burst search (M. Mori et al., 2022 ApJ **938** 35)
 - Cluster search was performed under the following condition
 - Energy threshold: 5.5 MeV

Condition 1

Condition 2

Condition 3

• There was no cluster \rightarrow cluster condition to be suitable for failed SN

2 events / 0.5 sec
2 events / 2 sec
4 events / 10 sec

Analysis region: Jun. 2013 - Dec. 2017 (about 4.58 years)

Brightening from INR observation

Jun. 2013 Jan. 2014

- Cluster search : 2 events / 10 sec
 - Considering the time of neutrino emission from black hole

Expected Neutrino events for Failed SN 15

Expected energy spectrum in SK

- energy threshold

Estimate the energy threshold considering the expected background

Evaluation of cluster occurrence probability¹⁶

- Estimation of the number of clusters using background rate
 - Generate random events following the background rate
 - Count the number of clusters (2 events / 10 sec) \rightarrow calculate the expected number of clusters by 100000 times event generation
- Find the energy threshold where clusters do not exist more than 3σ

Analysis strategy

- Estimation of the number of clusters
- The energy threshold that clusters do not exist more than $3\,\sigma$

	Energy three
Seach region	>15.0 Me
Search region	>18.0 Me
[4.58 years]	>18.0 Me

Summary

- In the final phase of a massive star, a black hole is formed The formation time of a black hole can be identified from neutrino
- observations
- Hydrogen-depleted supergiant (M31-2014-DS1) identified via a mid-infrared brightening in 2014
 - Black hole formation is expected around 2014 2017
- 0.4 1.7 events are expected to be observed at 784 kpc
- We determine the analysis region and cluster search condition in SK Analysis region: Jun. 2013 - Dec. 2017
- - Cluster condition: 2 events / 10 s

