

Super-Kamiokande's Supernova monitoring

Guillaume Pronost, on behalf of the Super-Kamiokande Collaboration

Kamioka Observatory, ICRR, University of Tokyo

Supernova workshop, March 3rd 2025

Super-Kamiokande

World leading Water Cherenkov detector located in the Kamioka Mine (Japan)

- The detector is filled with 50ktons of **gadolinium**-loaded water.
- Gadolinium was loaded at 0.01% in the water in Summer 2020, and the concentration was further increased to 0.03% in May 2022. Calibration was completed and the detector is running stably since then.
- Physics targets: Neutrino Oscillations (Solar Neutrino, Atmospheric Neutrinos, T2K beam), Nucleon decay, Astrophysics (Supernova burst, Diffuse Supernova Neutrino Background, etc.)

Supernova Neutrinos in Water Cherenkov Detectors

- Even if all neutrino and antineutrinos flavours are produced during the corecollapse supernova, due to interaction crosssections, we are sensitive only to a few of them.
- In case of Water Cherenkov detector, the main interactions expected are:
 - ▷ Inverse Beta Decay reaction (IBD)
 - \rightarrow ~90% of the interactions
 - ▷ Electron Scattering interactions (ES) $\rightarrow \sim 5\%$ of the interactions

Keep the neutrino direction information

- $^{\triangleright}$ ¹⁶O interactions (CC and NC)
 - \rightarrow ${\sim}5\%$ of the interactions

Why Gadolinium?

- Gadolinium is the stable nucleus with the highest neutron capture cross-section on Earth. The gadolinium-neutron capture produced a gamma cascade with a total energy of ~8 MeV, allowing to detect and reconstruct the neutron capture.
- This is specially useful to tag Inverse Beta Decay interactions

Hydrogen-neutron capture: single 2.2 MeV gamma

- \rightarrow Large accidental background
- \rightarrow Vertex reconstruction difficult

Gadolinium-neutron capture: Gamma cascade at ~8 MeV

- ightarrow Lower background
- \rightarrow Vertex reconstruction possible

Using Gd-n to separate IBD and ES

- Water cherenkov detector can extract the direction of the SN from the ES interactions
 - Separating ES from IBD allows to improve the SN direction pointing accuracy of the detector
 - ▷ We can use the characteristic **delayed coincidence** between the IBD's positron emission and delayed neutron capture to **tag IBD events**.
 - \rightarrow Gd enhance the detectability of the neutron capture.

SN burst events w/o IBD tagging (10kpc simulation w/o Gd)

SN burst events w/ 49.7% IBD events tagged/removed (10kpc simulation with 0.03% Gd)

Realtime analysis

The Supernova burst monitoring analysis is a cut based online analysis. Hard cuts are applied to remove any potential noise, leading to lower efficiencies compared to the full potential of Super-Kamiokande. Offline (and slower) analysis reach better performances.

 \rightarrow Having a low energy threshold allows to collect more ES interaction, but leads to increase BG contamination

1000 MC simulations

Realtime analysis

- Improvement on the IBD tagging algorithms reduced the BG contamination, allowing to reduce the energy threshold from 7 to 6 MeV for a BG contamination of 2.70±0.01%
- Improvement on the IBD and ES interaction selection efficiency (Nakazato model, NMO):
 - $^{\triangleright}$ ~45.5% of the ES interactions (+5.8%)
 - $^{
 m >}$ ~91.2% of the IBD's positron interactions (+1.7%)
 - $^{\triangleright}$ ~56.3% of the IBD's neutron capture interactions (with 0.03% Gd) (+1.9%) \rightarrow ~51.3% IBD interactions are tagged (+4.4%)

Realtime angular resolution

Selection improvement led to better angular resolution:

With 0.03% Gd, our last realtime direction pointing accuracy is 3.68±0.04° at 10 kpc (Nakazato model, 6 MeV threshold) (0.30° improvement).

Realtime supernova monitoring in Super-Kamiokande

Supernova workshop, March 3rd 2025

pronost@km.icrr.u-tokyo.ac.jp

Realtime supernova monitoring in Super-Kamiokande

Supernova workshop, March 3rd 2025

pronost@km.icrr.u-tokyo.ac.jp

Supernova alarm in Super-Kamiokande

Pre-supernovae neutrinos

▶ Before the core-collapse, supernova progenitors starts burning their C, O, Ne, and Si layers. This burning produce a neutrino flux which can reach a luminosity of $\sim 10^{12} L_{\odot}$ (whereas the photon luminosity is $\sim 10^5 L_{\odot}$) [Astropart.Phys. 21 (2004) 303-313)]

 $e^{-} + e^{+} \rightarrow \nu_{x} + \overline{\nu}_{x}$

- During the Si-layer burning (~few days before the core-collapse), the average neutrino energy is above the IBD threshold (1.8 MeV), allowing a potential detection in Super-Kamiokande and the release of a pre-supernova alarm.
- For Betelgeuse (α -Ori) we can send a warning 10~15 hours before the core-collapse (NMO).

Supernova workshop, March 3rd 2025

Close supernova detection

- In case of very close supernova bursts, the amount of neutrino interactions may be too high for the Super-Kamiokande electronics system, causing overflow.
 - $^{\triangleright}$ We have developed two modules to prevent this issue
 - A "SN module" which records number of PMT hits overtime
 - A "veto module" which prescales the number of PMT hits to prevent overflow, enabled when a pre-SN alert is detected

Co-operation with telescopes

- If (when) Super-Kamiokande send a supernova alarm to the world, we hope some telescopes will be able to look for it in order to observe the first instants of the supernova burst.
 - We made a MoU with the All-Sky Automated Survey for SuperNovae Collaboration (ASAS-SN), a network of 20 telescopes located around the globe
 - We alos made a MoU with Tomo-e Gozen, allowing us to send them low significance alarms for training purpose
- If any other telescope collaborations or consortia are interested in making a direct, minimum latency connection with Super-Kamiokande's supernova alarm, please contact us!

Summary

- Super-Kamiokande is continuously monitoring the detector events to probe any burst of events indicating a supernova.
 - Selection algorithm improvements allowed to reduce our energy threshold while keeping good BG rejection level, improving our selection efficiencies
 - Supernova direction reconstructed with a resolution of 3.68±0.04° at 10 kpc (assuming Nakazato model, NMO)
 - ▷ Automated alarm through GCN notice within 1.5 minutes after the neutrino burst.
 - Using pre-SN neutrino, Super-Kamiokande may be able to detect a close SN (<100pc) 10~15h before the core collapse. For such close SN, custom hardware modules allow to handle and smooth the rate of events in the detector, preventing our electronics to be overflowed.
- We are making cooperation agreement with some telescopes, in order to ensure our supernova alarms will be followed to observe the first instants of the supernova burst.
 - ▷ MoU with All-Sky Automated Survey for SuperNovae Collaboration (ASAS-SN)
 - ▷ MoU with Tomo-e Gozen, to send them low significance alarms for training purpose
 - ▷ Discussion on-going with other telescopes.

Backup

Core-Collapse Supernovae

Massive stars (8+ M_☉) can end their life as core-collapse supernovae (or Type II SN), a cataclysmic implosion giving birth to a neutron stars or a black hole (failed supernova).

99% of the Core-Collapse Supernova's energy is released through neutrino

Core-Collapse Supernova Burst

After the finishing burning its fuel, massive stars can collapse on themselves, as the heat pressure is not enough to compensate the gravitionnal force.

- Higher energy gamma rays are produced, decomposing the Fe nuclei into He and free neutrons through photo-disintegration.
- High matter density triggers a neutronization process, producing V_e through electron-capture on protons (1)
- ▷ High density of V_e leads V_e to have continuous interactions with e⁻ (2)
 → Build up of a degenerate V sea, producing

all 6 flavors of v and \overline{v}

SN direction fitter improvement investigations

- **HEALPix** based fitter (**H**ierarchical **E**qual **A**rea isoLatitude **Pix**elation of a sphere):
 - $^{\triangleright}$ A sphere of the sky is made and divided in pixels of equal area
 - The pixels are populated with the projection of each event's reconstructed direction on the sphere.
 - $^{\triangleright}$ The sphere is then smoothed with a gaussian function
 - ▷ The pixel with the maximum number of events is then selected as the SN direction

Realtime angular resolution with other models

All models are with NMO

Summary of Supernova models. Core bounce occurs at 0 s.

Model Name	Wilson ^[1]	Nakazato ^[2]	Mori ^[3]	Hüdelpohl ^[4]	Fischer ^[5]	Tamborra ^[6]
Dimension	1D	1D	1D	1D	1D	3D
progenitor mass $[M_{\odot}]$	20	20	9.6	8.8	8.8	27
start time [s]	0.03	-0.05	-0.256	-0.02	0.0	0.011
duration [s]	14.96	20.05	19.95	8.98	6.10	0.54
Equation of State	-	Shen*	DD2**	Shen*	Shen*	LS***

Realtime angular resolution with other models

Realtime angular resolution with other models

 Reference
 [1] Totani, T., et al. ApJ 496.1 (1998): 216

 [2] Nakazato, K., et al. ApJS 205.1 (2013): 2

 [3] Mori, M., et al. PTEP 2021.2 (2021): 023E01

 [4] Hüdepohl, L., et al. PhRvL 104.25 (2010): 251101

 [5] Fischer, T., et al. A&A 517 (2010): A80

 [6] Tamborra et al. PRD 90.4 (2014): 045032.

*Shen, et al. *Nucl. Phys. A* **637** (1998) 435–450. Shen, et al. *PTEP* **100** (1998) 1013–1031. **Mori *et al.*, *PTEP* **2021** (2021) 023E01 ***Lattimer & Swesty, *Nucl. Phys. A* **535** (1991) 331–376.

Angular resolution as function of energy threshold

Low alarm

- This internal alarm is shared with some telescopes following an MoU
- We can have a \sim 50% coverage for SN up to 150 kpc for the following cuts:
 - ▷ Cluster with dimension 3 (volumic) or 2 (area), with high enough likelihood (>400)
 - $^{\triangleright}$ + Number of events (after muon events excluded) > 9
 - $^{\triangleright}$ + Number of tagged IBD (after muon events excluded) > 5
- Our current sample of false alarms doesn't pass these criteria