Development of alarm method incorporating pre-supernova neutrino light curve 2025/3/3 11th Supernova Neutrino Workshop Research center for neutrino science Keita Saito

1. Pre-supernova neutrino and KamLAND

2. Alarm methodology

3. Alarm performance

4. Significance evaluation of Betelgeuse

1. Pre-supernova neutrino and KamLAND

2. Alarm methodology

3. Alarm performance

4. Significance evaluation of Betelgeuse

Pre-supernova neutrino

<u>Pre-supernova neutrino (Pre-SN ν)</u>

All flavor neutrinos are predominantly emitted during the last stage of massive (M > 8 M \odot) stars

- Thermal pair production
- Nuclear weak interactions

Pre-SN ν flux is calculated from star evolution simulations(**Pre-SN model**)

<u>Motivation for detecting Pre-SN ν </u>

Alarm system to CCSNe (Pre-SN v alarm)

2025/3/3

11th Supernova Neutrino Workshop

Pre-SN alarm

Pre-SN ν issues alarm to neutrino, gravitational wave (GW) and electromagnetic (EM) CCSN observations

- Pre-SN ν are emitted before core collapse
 - EM detectors observe stars before and during core collapse due to stelar evolution
 - v and GW detectors prevent CCSN data unavailability due to maintenance or calibration works
- Alarm distance $\lesssim 1 \text{ kpc}$
 - restrict number of CCSN candidate stars to ~ 30
 - All CCSN candidate is covered by aligning telescope worldwide with these star

KamLAND (Kamioka Liquid scintillator Anti Neutrino Detector)

KamLAND is a large liquid scintillator v detector located at Kamioka mine in Gifu prefecture

Inner detector

Event detection 1 kton liquid scintillator 1325 17inch + 554 20inch PMTs

Outer detector Shield + Active veto

> 3.2 kton water Cherenkov detector 140 20inch PMTs

Detection channel of pre-SN $\bar{\nu}_{e}$

KamLAND has potential to detect pre-SN $\bar{\nu}_e$ via inverse beta decay $(\bar{\nu}_e + p \rightarrow e^+ + n)$

• Energy threshold

 \rightarrow Low energy threshold: $E_{\nu} \gtrsim 1.8 \text{ MeV}$

Delayed coincidence

- Time/Spatial correlation between prompt & delayed signals
 - → Low background(BG) rate: 0.22 /day

BG rate depends on reactor's operational status Assumption: Reactor in Wakasa-bay & Korean are operating

Goal of my study

Goal of my study

Issue alarm for Betelgeuse (Pre-SN candidate star)

Conventional alarm method

- Significance evaluation based on statistical excess of observed event rate from background one (**Rate analysis**)
- Not sensitive to Betelgeuse, inverted mass ordering (IO)

Alarm method incorporating time evolution of observed pre-SN \bar{v}_e rate (**Rate+Time analysis**)

Time evolution of expected pre-SN \bar{v}_e rate

Time [hour]

Note: Time evolution of real pre-SN \overline{v}_e rate **does not** always match that calculated from pre-SN model

Rate+Time analysis requires pre-SN time profile calculated from pre-SN model

Does Rate+Time analysis issue earlier than Rate analysis if pre-SN \overline{v}_e signal differ from reference pre-SN model?

2025/3/3

Contents

1. Pre-supernova neutrino and KamLAND

2. Alarm methodology

3. Alarm performance

4. Significance evaluation of Betelgeuse

Alarm methodology(1/2)

Rate+Time analysis is based on hypothesis test using log likelihood ratio (LLR)

Expected event number and trend of increasing event time depend on pre-SN model (Reference model)

Alarm methodology(2/2)

 $LLR = \log \frac{\text{Likelihood(BG + Signal)}}{\text{Likelihood(BG Only)}}$

 $n \& \tau_i$ generated using Monte Carlo method (MC) are substituted into LLR function and create LLR distribution

Significance is calculated from **p-value**

p-value quantifies the strength of evidence to reject hypothesis of BG only

Alarm system

Alarms using various **reference model** are set in parallel

- Using log likelihood function with specific reference model
- Assuming $15 M_{\odot}$ star at 150 pc

Contents

1. Pre-supernova neutrino and KamLAND

2. Alarm methodology

3. Alarm performance

4. Significance evaluation of Betelgeuse

Alarm time

Evaluation of significance using MC simulated events

Rate+Time analysis issues earlier than Rate analysis

Pre-SN model robustness(1/2)

Alarm significance evaluation from various reference and signal model

Reference model:Characterize the shape of likelihood functionSignal model:Target for significance evaluation

Both model assumes $15 M_{\odot}$ star at 150 pc

Alarm time [hour] (**Red**: the earliest alarm time in particular signal model)

		Signal model					
		Patton		Odrzywolek		Kato	
Reference model		NO	ΙΟ	NO	ΙΟ	NO	ΙΟ
Patton	ΝΟ	-20.5	-7.3	-82.5	-7.3	-36.5	-2.2
	ΙΟ	-20.3	-7.3	-71.4	-6.8	-34.7	-1.8
Odrzywolek	NO	-18.2	-5.4	-97.5	-7.9	-37.0	-1.7
	ΙΟ	-19.2	-6.3	-95.4	-8.3	-36.9	-1.8
Kato	NO	-19.7	-6.4	-94.5	-7.9	-38.3	-2.7
	ΙΟ	-20.1	-6.9	-87.9	-7.4	-37.1	-2.7
Rate analysis		-12.3	-2.5	-81.6	-4.8	-26.7	-0.1

Alarm is issued at the earliest when reference model = signal model

2025/3/3

11th Supernova Neutrino Workshop

Pre-SN model robustness(2/2)

Real pre-SN \overline{v}_e signal may **not** match **the same** time evolution as **reference model** Alarm significance evaluation with **reference model** \neq **signal model**

Alarm time [hour] (Red: the earliest alarm time in particular signal model)

		Signal model					
		Patton		Odrzywolek		Kato	
Reference model		NO	ΙΟ	NO	ΙΟ	NO	ΙΟ
Patton	NO	\ge	\succ	-82.5	-7.3	-36.5	-2.2
	ΙΟ	\searrow	$\boldsymbol{\succ}$	-71.4	-6.8	-34.7	-1.8
Odrzywolek	NO	-18.2	-5.4	\searrow	\succ	-37.0	-1.7
	ΙΟ	-19.2	-6.3	\searrow	$\boldsymbol{\succ}$	-36.9	-1.8
Kato	NO	-19.7	-6.4	-94.5	-7.9	\searrow	\succ
	ΙΟ	-20.1	-6.9	-87.9	-7.4	\searrow	\mathbf{i}
Rate analysis		-12.3	-2.5	-81.6	-4.8	-26.7	-0.1

Rate+Time Analysis with reference model ≠ signal model issues earlier than Rate analysis

Contents

1. Pre-supernova neutrino and KamLAND

2. Alarm methodology

3. Alarm performance

4. Significance evaluation of Betelgeuse

Alarm significance of Betelgeuse(1/2)

<u>Betelgeuse</u>

- ▶ Initial mass *M*^[1]: 18 21 *M*_☉
- Distance from Earth $d^{[1]}$: 168.1^{+27.5}_{-14.9} pc

[1]Joyce et al. (2020)

Alarm significance evaluation from two typical case (from Kato simulation)

(*M*, *d*) = $(18 M_{\odot}, 153.2 \text{ pc}), (21 M_{\odot}, 195.6 \text{ pc})$

Time evolution of expected pre-SN \bar{v}_e event rate

Alarm Significance of Betelgeuse(2/2)

- Rate+Time analysis issue alarms for Betelgeuse with IO, unlike Rate analysis
- Rate+Time analysis is expected to alarm at least 1.1 hours before Betelgeuse's core collapse

Alarm time [hour] (Red: the earliest alarm time in particular signal model)

		Signal model					
Reference model (15 M_{\odot} star at 150 pc)		$(18 M_{\odot}, 1$.53.2 pc)	(21 <i>M</i> _☉ , 195 . 6 pc)			
		NO	IO	NO	ΙΟ		
Patton	ΝΟ	-17.9	-2.5	-23.5	-1.1		
	ΙΟ	-16.9	-2.6	-23.6	-1.0		
Odrzywolek	ΝΟ	-18.4	-1.0	-22.1	-0.3		
	ΙΟ	-18.7	-1.7	-22.8	-0.5		
Kato	ΝΟ	-19.1	-1.6	-23.0	-0.8		
	ΙΟ	-18.1	-2.0	-23.3	-1.1		
Rate analysis		-11.6	N/A	-18.6	N/A		

Contents

1. Pre-supernova neutrino and KamLAND

2. Alarm methodology

3. Alarm performance

4. Significance evaluation of Betelgeuse

Summary

Pre-SN neutrino

- produced before a few days from supernova explosion
- alarm to neutrino, gravitational wave and electromagnetic wave detector

Development of alarm method incorporating time evolution of observed pre-SN $\bar{\nu}_e$ rate (Rate+Time analysis)

✓ check pre-SN model robustness

<u>Accomplishments</u>

Rate+Time analysis issue alarms for Betelgeuse with IO unlike Rate analysis

Implementable when KamLAND data taking restarts from 2027

2025/3/3

Prospect

- Alarm sensitivity evaluation with false alarm rate (FAR)
- Application of Rate+Time analysis to SK-Gd
- Alarm sensitivity evaluation for other stars (<u>Mainak Mukhopadhyay et al</u>)
- Using energy spectrum

 $\mathcal{L} = PDF(Rate) \times PDF(Time) \times PDF(Energy)$

