

暗黒物質直接探索検出器を用いた 超新星ニュートリノの観測

計画研究 B02:

超大型液体キセノン検出器で解明する宇宙暗黒物質の謎

Kavli IPMU, UTokyo PMU Masaki Yamashita on behalf of the XENON Collaboration

第11回超新星ニュートリノ研究会2025/03/03,04@東大駒場キャンパス

SNEWS 2.0

https://snews2.org S Al Kharusi et al 2021 New J. Phys. 23 031201

Experiment	Туре	Mass (kt)	Location	11.2 M_{\odot}	$27.0\ M_\odot$	$40.0 \ M_{\odot}$
Super-K	$H_2O/\bar{\nu}_e$	32	Japan	4000/4100	7800/7600	7600/4900
Hyper-K	$H_2O/\bar{\nu}_e$	220	Japan	28K/28K	53K/52K	52K/34K
IceCube	String/ $\bar{\nu}_{e}$	2500*	South Pole	320K/330K	660K/660K	820K/630K
KM3NeT	String/ $\bar{\nu}_{e}$	150*	Italy/France	17K/18K	37K/38K	47K/38K
LVD	$C_n H_{2n} / \bar{\nu}_e$	1	Italy	190/190	360/350	340/240
KamLAND	$C_n H_{2n}/\bar{\nu}_e$	1	Japan	190/190	360/350	340/240
Borexino	$C_n H_{2n} / \bar{\nu}_e$	0.278	Italy	52/52	100/97	96/65
JUNO	$C_n H_{2n} / \bar{\nu}_e$	20	China	3800/3800	7200/7000	6900/4700
SNO+	$C_n H_{2n} / \bar{\nu}_e$	0.78	Canada	150/150	280/270	270/180
NOvA	$C_n H_{2n} / \bar{\nu}_e$	14	USA	1900/2000	3700/3600	3600/2500
Baksan	$C_n H_{2n} / \bar{\nu}_e$	0.24	Russia	45/45	86/84	82/56
HALO	Lead/ ν_{e}	0.079	Canada	4/3	9/8	9/9
HALO-1kT	Lead/ ν_{e}	1	Italy	53/47	120/100	120/120
DUNE	Ar/ν_e	40	USA	2700/2500	5500/5200	5800/6000
MicroBooNe	Ar/ν_e	0.09	USA	6/5	12/11	13/13
SBND	Ar/ν_e	0.12	USA	8/7	16/15	17/18
DarkSide-20k	Ar/any ν	0.0386	Italy		250	
XENONnT	Xe/any ν	0.006	Italy	56	106	
LZ	Xe/any ν	0.007	USA	65	123	—
PandaX-4T	Xe/any ν	0.004	China	37	70	

Masaki Yamashita, Kavli IPMU, UTokyo

WIMP dark matter Neutrino Rare Decay (double electron capture, double beta decay)

The house

Drift Length	Diameter	Sensitive Target	Drift Field
1.5m	1.32m	5.9 tonne	23 V/cm

okavli PMU

•200+ scientists

- •30 institutions
- •12 countries

AMERICA

UC San Diego

♥ San Diego

CHICAGO

Houston

Chicago

PMU

Neutrino detectors and XENONnT

Coherent Elastic Scattering of Neutrinos (CEvNS)

PHYSICAL REVIEW D

KAVL

PMU

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†]

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10^{-38} cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu + A \rightarrow \nu + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

1974 Coherent elastic neutrino-nucleus scattering (CEvNS) was predicted theoretically by D.Z. Freedman.

1985 Drukier&Stodolsky and Goodman&Witten showed the possibility for the detection of astrophysical neutrino or dark matter through coherent elastic scattering

2017 It was observed experimentally for the first time only in 2017 in the COHERENT experiment with neutrinos produced by the Spallation Neutron Source.

 $^{A}_{Z}\mathcal{N}$

It took ~40 years to observe it. Why?

Masaki Yamashita, Kavli IPMU, UTokyo

7 (2017)
50 55
00 00

KAVLI PMU **Neutrino-Nucleus Interactions**

Inelastic incoherent $\lambda_{Z^0} \ll 2R$

Elastic incoherent $\lambda_{Z^0} \lesssim 2R$

~ 100 GeV

 $\lambda \sim R (\sim 5 \text{fm}), E_{\nu} \lesssim 50 \text{ MeV},$

~ GeV ~MeV

M. Cadeddu et al. EPL, 143 (2023) 34001

E ~ x 1/1000 w.r.t. neutrino detector

 ν_{α}

Two-phase Xe Time Projection Chamber

- Target Liquid Xenon (-100°C, 3 g/cm⁻³)
- S1: Scintillation
- S2: electron (->proportional light)

Masaki Yamashita, Kavli IPMU, UTokyo

- simultaneously observe both S1 and S2
- 3D event imaging: x-y (S2) and z (drift time)
- Self-shielding, surface event rejection, single vs multiple scatter events
- Particle identification using S2/S1 ratio (nuclear recoil vs beta, gamma)

KAVL PMU **Two-phase Xe Time Projection Chamber**

- Target Liquid Xenon (-100°C)
- S1: Scintillation
- S2: electron (->proportional light)

Masaki Yamashita, Kavli IPMU, UTokyo

- simultaneously observe both S1 and S2
- 3D event imaging: x-y (S2) and z (drift time)
- Self-shielding, surface event rejection, single vs multiple scatter events
- Particle identification using S2/S1 ratio (nuclear recoil vs beta, gamma)
- one drifted electron produces ~ 200 photon -> ~30 Photoelectron/electron

Improve Energy threshold by usin S2-only for SN search : S2 only < 1keV (E threshold)

Solar Neutrino (⁸B) Result

Editors' Suggestion

PMU

Featured in Physics

Masaki Yamashita, Kavli IPMU, UTokyo

PHYSICAL REVIEW LETTERS 133, 191002 (2024)

First Indication of Solar ⁸B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT

First solar ⁸B flux measurement via CEvNS as

Masaki Yamashita, Kavli IPMU, I

XENONnT: 3 detectors

CEvNS

through inverse-beta decay channel

XENONnT: 3 detectors

Neutron Veto System: Gd-loaded Water

- 45 t (out of 700 t water tank) ~10 events - 120 PMTs in nVETO - Highly reflective ePTFE and ultra-pure water to maximize light-collection efficiency - Tag neutrons through the neutron capture on hydrogen which releases a 2.22 MeV γ -ray

Muon Veto System: Gd-loaded Water

- 655 t (out of 700 t water tank)
- 84 PMTs in µVETO

Xe Time Projection Chamber

- 5.9 t LXe target (WIMP detector) ~100events

~60 events

Gd-loaded water (EGADS, SK-Gd technology)

Supernova Neutrino Detection through inverse-beta decay channel

CEvNS

CEvNS: Coherent Elastic Neutrino-Nucleus Scattering Melih Kara@SNvD

Differential CE_vNS rates

$$dE_{\nu} f_{\nu}(E_{\nu}, t, d) \frac{d\sigma}{dE_{R}}(E_{\nu}, E_{r})$$

@10 kpc ~ 50-100 interactions

XENONnT LXe TPC

Masaki Yamashita, Kavli IPMU, UTokyo

snewpy: Astrophys.J. 925 (2022) 2, 107

Masaki Yamashita, Kavli IPMU, UTokyo

- Dual phase dark matter LXe detectors can detect supernova neutrinos.
- Large atomic number of xenon (A~131) dominant signal in CEvNS.
- XENONnT is ready to participate in Supernova Early Warning System.
- More than 8σ significance within 10 kpc.
- DARWIN/XLZD is the ultimate dark matter detector at least 10x larger target mass.

Masaki Yamashita, Kavli IPMU, UTokyo

XENON-LZ-Darwin

