ニュートリノ反応率に依存する ニュートリノ集団振動の振る舞い (Behaviors of Collective Neutrino Oscillations Induced by Neutrino Reactions)

Masamichi Zaizen

Komaba, Univ. of Tokyo

arXiv:2502.09260

第11回超新星ニュートリノ研究会

Komaba, Univ. of Tokyo @ Mar. 04, 2025

1

Roles of Neutrinos in CCSNe

Neutrino-heating process:

- Shock wave stalls due to accreting matter and fails to explode.
- Neutrinos transfer their energy from the hotter center to the colder stalled shock.
- Neutrinos work as *mediators* because of their weakly-coupling with matter.

Theoretical studies / modelings on v-transport are essential. \rightarrow *One of the uncertainties is neutrino oscillation*.

Progress in CCSN Simulation

Advance in Neutrino Transport

Sea of Leptons & Nucleons

 ν_u

 \mathcal{V}_{u}

 $\left| \nu_{e} \right\rangle$

Neutrino Transport with Quantum Kinetics:

 $(\partial_t + \boldsymbol{v} \cdot \nabla)\rho_{\nu} = \boldsymbol{\mathcal{C}}[\rho_{\nu}] - \mathrm{i}[\boldsymbol{\mathcal{H}}, \rho_{\nu}]$

PNS *R* ~ 10 km

 ν_e

• Collisions $\propto (G_{\rm F}^2 n_l)^{-1}$

 ν_e

n

- Refractions $\propto (G_F n_l)^{-1}$
 - \rightarrow Flavor conversion (*e.g.*, MSW effects)

n

Propagating in matter

p

 \rightarrow Shorter (faster) physical scale ~ 1 cm!!

 $\nu_{?}$

Quantum Kinetic Neutrino Transport

п

(Boltzmann) Neutrino Transport + Quantum Kinetics

Neutrino heating

 $\nu_e + n \rightarrow p + e^-$

п

 $\bar{\nu}_e + p \to n + e^+$

Absorption

 ν_e

Observation

MSW resonance (Matter + Vacuum osc.)

Refractive

 \mathcal{V}_e

PNS

R ~ 10 km

Self-interactions

 v_e

 v_{μ} ,

Collective Neutrino Oscillation

 \mathcal{V}_{μ}

Stalled shock *r* ~ 200 km

Envelope $r \sim O(1000) \, \mathrm{km}$

Flavor Conversion in v-Transport

Classical Boltzmann Equation

$$\left(p^{\mu}\frac{\partial}{\partial x^{\mu}} + \frac{\mathrm{d}p^{j}}{\mathrm{d}\tau}\frac{\partial}{\partial p^{j}}\right)f_{\nu} = \mathcal{C}[f_{\nu}]$$

Quantum Kinetic Equation

= Oscillation term

$$\left(p^{\mu}\frac{\partial}{\partial x^{\mu}} + \frac{\mathrm{d}p^{j}}{\mathrm{d}\tau}\frac{\partial}{\partial p^{j}}\right)\rho_{\nu} = -\mathrm{i}\left[H_{\mathrm{osc}},\rho_{\nu}\right] + \mathcal{C}[\rho_{\nu}]$$
Refractive effect

Neutrino density matrix (for 2-flavor):

$$\rho_{\nu} = |\psi_{\nu}\rangle \langle \psi_{\nu}| = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} \\ \rho_{\mu e} & \rho_{\mu\mu} \end{pmatrix}^{\bullet} \quad \begin{array}{l} \rho^{\alpha\alpha} : \text{flavor content of } \alpha \\ = same \text{ as } f_{\alpha} \\ \rho^{\alpha\beta} : \text{flavor correlation} \\ \text{between } \alpha \text{ and } \beta \\ \end{array}$$

Flavor Conversion in v-Transport

Neutrino density matrix (for 2-flavor):

$$\rho_{\nu} = |\psi_{\nu}\rangle \langle \psi_{\nu}| = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} \\ \rho_{\mu e} & \rho_{\mu\mu} \end{pmatrix}^{*} \cdot \frac{\rho^{\alpha \alpha} : \text{flavor content of } \alpha}{= same as f_{\alpha}} \\ \rho^{\alpha \beta} : \text{flavor correlation} \\ = \begin{pmatrix} \langle \nu_{e} | \nu_{e} \rangle & \langle \nu_{e} | \nu_{\mu} \rangle \\ \langle \nu_{\mu} | \nu_{e} \rangle & \langle \nu_{\mu} | \nu_{\mu} \rangle \end{pmatrix} \\ = \begin{pmatrix} \langle \nu_{e} | \nu_{e} \rangle & \langle \nu_{e} | \nu_{\mu} \rangle \\ \langle \nu_{\mu} | \nu_{e} \rangle & \langle \nu_{\mu} | \nu_{\mu} \rangle \end{pmatrix} \\ \text{Via mixing angles,} \\ \text{Flavor correlation becomes perturbative.} \\ (\text{Less dependent on mass ordering}) \\ \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix} \\ \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \end{pmatrix} = \text{flavor conversion} \\ \text{Significant flavor conversion} \\ \end{pmatrix}$$

Instability by Self-Interactions

Relatively longer scale

Collisions in Quantum Regime

e.g., Emission & Absorption processes are

$$C[\rho] = \begin{pmatrix} R_{emi}(1 - \rho_{ee}) - R_{abs}\rho_{ee} & -\frac{1}{2}(R_{emi} + R_{abs})\rho_{ex} \\ -\frac{1}{2}(R_{emi} + R_{abs})\rho_{xe} & 0 \end{pmatrix}$$

$$\equiv C_{cls} + C_{qke}$$
Quantum contributions (off-diagonal parts)
• Flavor-decohering collisions $\sim -R_E\rho_T$
Classical collisions (diagonal parts)
• Changing the numbers/momenta of (anti-)neutrinos
• Contribution (C_{xx}) to heavy-leptonic flavors is neglected.

→ Reactions settle down the neutrinos to "flavor-diagonal" distributions.
 ~ Oscillations are fixed on the mixed-flavor population.

→ Flavor Instability?

Collisional Flavor Instability

$$\partial_t \rho = -\mathrm{i} \left[\mathcal{H}_{\nu\nu}, \rho \right] - R_E \rho_{\mathrm{T}}$$

Self-interactions: $\mathcal{H}_{\nu\nu} = \sqrt{2}G_{\rm F} \int d\Gamma' v^{\mu}v'_{\mu}(\rho' - \bar{\rho}^{*'})$ *Couplings* $\partial_t \bar{\rho} = -i \left[\bar{\mathcal{H}}_{\nu\nu}, \bar{\rho}\right] - \bar{R}_E \bar{\rho}_{\rm T}$

→ When the entire system has *the disparity in collision rates* between neutrinos and antineutrinos, flavor instability can appear.
Johns PRL '23

$$\mathcal{H}_{\nu\nu} \to \int \mathrm{d}\Gamma(-R_E\rho_{ex} + \bar{R}_E\bar{\rho}_{ex}) \propto -\langle R_E \rangle + \langle \bar{R}_E \rangle$$

→ Flavor correlation can grow!!
 (But relatively slower)

r Instability

 $z \, (\mathrm{km})$

I) appears at broad radii.

Phenomenological Approach

K. Mori+ PASJ '25. 3D-CCSN simulations

Assumptions:

- 1. Below a critical density, $\rho < \rho_{crit}$.
- 2. Equipartition with conservations.

This may overestimate but can change the shock dynamics.

Need more accurate FC theory. → Direct computation!!

Strategy for Quantum Transport

Setting QKE

$$\partial_t \rho = -\mathrm{i} \left[\mathcal{H}_{\nu\nu}, \rho \right] - R_E \rho_{\mathrm{T}}$$

$$\overset{-}{R}_{\nu}^{}(E_{\nu}) = \overset{(-)}{R}_{0}^{}\left(\frac{E_{\nu}}{10 \,\mathrm{MeV}}\right)^{2}$$

 $R_0 = 1 \text{ km}^{-1}$ \bar{R}_0 for anti-neutrinos from 0 to 2 km^{-1} At $\bar{R}_0 \sim 0.64 \text{ km}^{-1}$, $\langle R \rangle \sim \langle \bar{R} \rangle$ = No disparity

Collisionally Unstable Modes

Evolution of Minus Mode

Evolution of Plus Mode

$$\begin{array}{c} n_{\nu_e} > n_{\bar{\nu}_e} \\ \langle R_E \rangle > \langle \bar{R}_E \rangle \\ (\bar{R}_E = 0.1 R_E) \end{array} \right\}_{Same Hierarchy} \\ Y_e \sim 0.1 \end{array}$$

$$\nu_e \leftrightarrow \nu_\mu$$
 Swap

Rich spectral diversity! Not just equipartition

Eigenvector of Unstable Modes

Eigenvector of Unstable Modes

Back to Classical Transport

We'll obtain more accurate v-transport implementing Quantum Kinetics w/o direct computation.

Summary

- 1. Collision-induced flavor conversion can occur at deeper radii.
- 2. Dominant unstable mode depends on the magnitude relation in number density & collision rate.
- Asymptotic behavior (state) with energy dependence is determined by the corresponding unstable mode.
 Flavor equipartition or swap
- 4. But there are still some assumptions. More accurate demonstration is required with realistic models.